Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse

Thumbnail
View/Open
2022_Bodgan_Martin_Learning_algorithms_for_spiking_neural_networks.pdf (462.4Kb)
Use this link to cite
http://hdl.handle.net/2183/31380
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadata
Show full item record
Title
Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse
Author(s)
Bogdan, Martin
Date
2022
Citation
Bogdan, M. (2022) Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse. XLIII Jornadas de Automática: libro de actas, pp.201-207 https://doi.org/10.17979/spudc.9788497498418.0201
Abstract
[Abstract] Artificial Neural Networks (ANN) and Machine Learning (ML) currently also known as Deep Learning (DL) became more and more important in industrial applications during the last decade. This is due to new possibilities by strongly increased available computational power in connection with a renaissance of ANN in terms of so-called Deep Learning (DL). As DL requires especially for Big Data extreme computational power, the question of resource preserving methods came recently into the focus. Also, the often propagated intelligence of DL resp. "Cognitive Computing" in terms of contextual information processing is more often discussed since it is effectively missed in DL solutions. One option to overcome both challenges might be the third generation of ANNs: Spiking Neural Networks (SNN). But since SNN training methods are slow compared to DL learning algorithms, the question of the way how to learn SNNs arose. We will discuss different aspects of learning algorithms for SNNs: Is it useful to adopt DL learning algorithms to SNN or not, especially if one will preserve the "cognitive" functions of SNNs?
Keywords
Spiking neural networks
Learning algorithm
STDP
Hebbian learning
Deep learning
Cognitive computing
Artificial neural networks
 
Editor version
https://doi.org/10.17979/spudc.9788497498418.0201
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Related items

Showing items related by title, author, creator and subject.

  • Enfoques de Aprendizaje en estudiantes de universidad : la escala bifactorial CEPE-U2F 

    Barca-Lozano, Alfonso; Peralbo, Manuel; Brenlla-Blanco, Juan-Carlos; Barca Enríquez, Eduardo (Universidade da Coruña, Servizo de Publicacións, 2019)
    [Resumen] Este trabajo tiene por finalidad la elaboración de la Escala abreviada de evaluación de enfoques de aprendizaje a partir de la Escala original de John Biggs (SPQ-Study Process Questionnaire) con una muestra de ...
  • Ecologías de aprendizaje en la Era digital: desafíos para la educación superior 

    González-Sanmamed, Mercedes; Sangrà, Albert; Souto-Seijo, Alba; Estévez, Iris (Universidad de Granada, 2018-04-12)
    [Resumen] La inmersión de la sociedad en la era digital ha influido de manera decisiva en las formas de comportarse de las personas, en el ámbito del trabajo, de la economía, del entretenimiento y de la enseñanza. La ...
  • Una integración a sistemas de gestión de aprendizaje en estándares de un sistema barra-bola 

    Montoro, Alicia; Ruano Ruano, Ildefonso; Estévez, Elisabet; Gómez Ortega, Juan; Gámez García, Javier (Universidade da Coruña, Servizo de Publicacións, 2021)
    [Resumen] Los laboratorios de tipo online tienen cada vez más aceptación dentro de la educación universitaria relacionada con las ciencias, tecnologías, ingenierías y matemáticas (CTIM o STEM en inglés), donde el trabajo ...

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback