Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse
Use este enlace para citar
http://hdl.handle.net/2183/31380
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
Metadatos
Mostrar o rexistro completo do ítemTítulo
Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulseAutor(es)
Data
2022Cita bibliográfica
Bogdan, M. (2022) Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse. XLIII Jornadas de Automática: libro de actas, pp.201-207 https://doi.org/10.17979/spudc.9788497498418.0201
Resumo
[Abstract] Artificial Neural Networks (ANN) and Machine Learning (ML) currently also known as Deep
Learning (DL) became more and more important in industrial applications during the last decade. This is due to new possibilities by strongly increased available computational power in connection with a renaissance of ANN in terms of so-called Deep Learning (DL). As DL requires especially for Big Data extreme computational power, the question of resource preserving methods came recently into the focus. Also, the often propagated intelligence of DL resp. "Cognitive Computing" in terms of contextual information processing is more often discussed since it is effectively missed in DL solutions. One option to overcome both challenges might be the third generation of ANNs: Spiking Neural Networks (SNN). But since SNN training methods are slow compared to DL learning algorithms, the question of the way how to learn SNNs arose. We will discuss different aspects of learning algorithms for SNNs: Is it useful to adopt DL learning algorithms to SNN or not, especially if one will preserve the "cognitive" functions of
SNNs?
Palabras chave
Spiking neural networks
Learning algorithms
STDP
Hebbian learning
Deep learning
Cognitive computing
Artificial neural networks
Learning algorithms
STDP
Hebbian learning
Deep learning
Cognitive computing
Artificial neural networks
Versión do editor
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8
Ítems relacionados
Mostrando ítems relacionados por Título, autor ou materia.
-
Enfoques de Aprendizaje en estudiantes de universidad : la escala bifactorial CEPE-U2F
Barca-Lozano, Alfonso; Peralbo, Manuel; Brenlla-Blanco, Juan-Carlos; Barca Enríquez, Eduardo (Universidade da Coruña, Servizo de Publicacións, 2019)[Resumen] Este trabajo tiene por finalidad la elaboración de la Escala abreviada de evaluación de enfoques de aprendizaje a partir de la Escala original de John Biggs (SPQ-Study Process Questionnaire) con una muestra de ... -
Ecologías de aprendizaje en la Era digital: desafíos para la educación superior
González-Sanmamed, Mercedes; Sangrà, Albert; Souto-Seijo, Alba; Estévez, Iris (Universidad de Granada, 2018-04-12)[Resumen] La inmersión de la sociedad en la era digital ha influido de manera decisiva en las formas de comportarse de las personas, en el ámbito del trabajo, de la economía, del entretenimiento y de la enseñanza. La ... -
Deep Learning Language Models for Music Analysis and Generation
Quintillán Quintillán, Daniel (2022)[Abstract] In this project, we tackle the problem of predicting the next note in a monophonic musical piece. We choose a symbolic representation and extract it from digital sheet music. The problem is approached as four ...