Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

StrikePy: Nonlinear observability analysis of inputs, states, and parameters in Python.

Thumbnail
Ver/abrir
2022_Rey_Rostro_David_StrikePy_Nonlinear_observability_analysis.pdf (565.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/31455
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadatos
Mostrar o rexistro completo do ítem
Título
StrikePy: Nonlinear observability analysis of inputs, states, and parameters in Python.
Autor(es)
Rey Rostro, David
Villaverde, Alejandro
Data
2022
Cita bibliográfica
Rey Rostro, D., F. Villaverde, A. (2022) StrikePy: Nonlinear observability analysis of inputs, states, and parameters in Python. XLIII Jornadas de Automática: libro de actas, pp.430-435. https://doi.org/10.17979/spudc.9788497498418.0430
Resumo
[Abstract] Dynamic models typically have unknown parameters that must be estimated from data, and they may also have unknown inputs (disturbances). The concept of observability, which describes the possibility of inferring the internal state of a system by measuring its output, can be extended to account also for the possibility of inferring its unknown parameters and inputs. Such an extension leads to a property that may be called FISPO (Full Input, State, and Parameter Observability). Its analysis is particularly relevant in systems biology, since models from this area often have a large number of unknown parameters, as well as state variables that cannot be measured due to experimental limitations. It is usually challenging to assess the FISPO of nonlinear models, which has motivated the development of specialized software such as the MATLAB toolbox STRIKE-GOLDD. However, despite the increasing popularity of Python among the biological modelling community, there was a lack of computational tools for FISPO analysis in this language. To fill this gap, we have developed an open source software toolbox, StrikePy, which implements the core functionalities in STRIKE-GOLDD.
 
Ministerio de Ciencia e Innovación; 10.13039/501100011033
 
Palabras chave
Nonlinear systems
Observability
Identifiability
Dynamic modelling
Biosystems
 
Versión do editor
https://doi.org/10.17979/spudc.9788497498418.0430
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións