Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

StrikePy: Nonlinear observability analysis of inputs, states, and parameters in Python.

Thumbnail
View/Open
2022_Rey_Rostro_David_StrikePy_Nonlinear_observability_analysis.pdf (565.7Kb)
Use this link to cite
http://hdl.handle.net/2183/31455
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadata
Show full item record
Title
StrikePy: Nonlinear observability analysis of inputs, states, and parameters in Python.
Author(s)
Rey Rostro, David
Villaverde, Alejandro
Date
2022
Citation
Rey Rostro, D., F. Villaverde, A. (2022) StrikePy: Nonlinear observability analysis of inputs, states, and parameters in Python. XLIII Jornadas de Automática: libro de actas, pp.430-435. https://doi.org/10.17979/spudc.9788497498418.0430
Abstract
[Abstract] Dynamic models typically have unknown parameters that must be estimated from data, and they may also have unknown inputs (disturbances). The concept of observability, which describes the possibility of inferring the internal state of a system by measuring its output, can be extended to account also for the possibility of inferring its unknown parameters and inputs. Such an extension leads to a property that may be called FISPO (Full Input, State, and Parameter Observability). Its analysis is particularly relevant in systems biology, since models from this area often have a large number of unknown parameters, as well as state variables that cannot be measured due to experimental limitations. It is usually challenging to assess the FISPO of nonlinear models, which has motivated the development of specialized software such as the MATLAB toolbox STRIKE-GOLDD. However, despite the increasing popularity of Python among the biological modelling community, there was a lack of computational tools for FISPO analysis in this language. To fill this gap, we have developed an open source software toolbox, StrikePy, which implements the core functionalities in STRIKE-GOLDD.
 
Ministerio de Ciencia e Innovación; 10.13039/501100011033
 
Keywords
Nonlinear systems
Observability
Identifiability
Dynamic modelling
Biosystems
 
Editor version
https://doi.org/10.17979/spudc.9788497498418.0430
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback