Towards a framework for the democratisation of deep semantic segmentation models
Ver/ abrir
Use este enlace para citar
http://hdl.handle.net/2183/31413
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
Metadatos
Mostrar o rexistro completo do ítemTítulo
Towards a framework for the democratisation of deep semantic segmentation modelsData
2022Cita bibliográfica
Escobedo, R., Heras, J. (2022) Towards a framework for the democratisation of deep semantic segmentation models. XLIII Jornadas de Automática: libro de actas, pp.980-984 https://doi.org/10.17979/spudc.9788497498418.0980
Resumo
[Abstract] Semantic segmentation models based on deep learning techniques have been successfully applied in several contexts. However, non-expert users might find challenging the use of those techniques due to several reasons, including the necessity of trying different algorithms implemented in heterogeneous libraries, the configuration of hyperparameters, the lack of support of many state-of-the-art algorithms for training them on custom datasets, or the variety of metrics employed to evaluate semantic segmentation models. In this work, we present the first steps towards the development of a framework that facilitates the construction and usage of deep segmentation models.
Palabras chave
Semantic segmentation
Deep learning
Democratisation
Deep learning
Democratisation
Versión do editor
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8