Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a framework for the democratisation of deep semantic segmentation models

Thumbnail
View/Open
2022_Escobedo_Ruben_Towards_a_framework_for_the_democratisation_of_deep_semantic.pdf (501.2Kb)
Use this link to cite
http://hdl.handle.net/2183/31413
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadata
Show full item record
Title
Towards a framework for the democratisation of deep semantic segmentation models
Author(s)
Rubén, Escobedo
Heras, Jónathan
Date
2022
Citation
Escobedo, R., Heras, J. (2022) Towards a framework for the democratisation of deep semantic segmentation models. XLIII Jornadas de Automática: libro de actas, pp.980-984 https://doi.org/10.17979/spudc.9788497498418.0980
Abstract
[Abstract] Semantic segmentation models based on deep learning techniques have been successfully applied in several contexts. However, non-expert users might find challenging the use of those techniques due to several reasons, including the necessity of trying different algorithms implemented in heterogeneous libraries, the configuration of hyperparameters, the lack of support of many state-of-the-art algorithms for training them on custom datasets, or the variety of metrics employed to evaluate semantic segmentation models. In this work, we present the first steps towards the development of a framework that facilitates the construction and usage of deep segmentation models.
Keywords
Semantic segmentation
Deep learning
Democratisation
 
Editor version
https://doi.org/10.17979/spudc.9788497498418.0980
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback