Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales

Thumbnail
Ver/abrir
2022_Asensio_Jimenez_Pablo_Prediccion_automatica_de_la_carga_frutal_de_olivos.pdf (1.261Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31410
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadatos
Mostrar o rexistro completo do ítem
Título
Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales
Autor(es)
Asensio Jiménez, Pablo
Martínez Gila, Diego Manuel
Satorres Martínez, Silvia
Estévez, Elisabet
Gómez Ortega, Juan
Gámez García, Javier
Data
2022
Cita bibliográfica
Asensio Jiménez, P., Martínez Gila, D.M., Satorres Martínez, S., Estévez Estévez, S., Gómez Ortega, J., Gámez García, J. (2022) Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales. XLIII Jornadas de Automática: libro de actas, pp.956-963 https://doi.org/10.17979/spudc.9788497498418.0956
Resumo
[Resumen] El sector del aceite de oliva y de la aceituna de mesa representan ya el 3% del PIB total de Andalucía. Teniendo en cuenta las cifras que este hecho supone, predecir la cosecha campaña tras campaña es clave para definir estrategias de marketing. Dada la gran superficie de olivar existente resulta interesante la integración de tecnologías emergentes que puedan facilitar esta tarea de predicción. En este trabajo se estudia la viabilidad del uso de cámaras de visión por computador de espectro visible embarcadas en UAVs para valorar de forma cualitativa la carga frutal de los olivos de una plantación. Las imágenes adquiridas fueron etiquetadas y posteriormente utilizadas para entrenar tres arquitecturas CNN (AlexNet, GoogLeNet, y ResNet) por el método de transferencia de aprendizaje. La arquitectura que mejor rindió fue GoogLeNet, que posteriormente fue optimizada obteniendo finalmente una tasa de éxito del 90% a la hora de clasificar imágenes que mostraban regiones de olivos con carga alta, media, baja y descarte (no olivo).
Palabras chave
UAV
Olivar
Aceituna
Redes convolucionales
Procesado de imagen
Aprendizaje máquina
 
Versión do editor
https://doi.org/10.17979/spudc.9788497498418.0956
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións