Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales

Thumbnail
View/Open
2022_Asensio_Jimenez_Pablo_Prediccion_automatica_de_la_carga_frutal_de_olivos.pdf (1.261Mb)
Use this link to cite
http://hdl.handle.net/2183/31410
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadata
Show full item record
Title
Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales
Author(s)
Asensio Jiménez, Pablo
Martínez Gila, Diego Manuel
Satorres Martínez, Silvia
Estévez, Elisabet
Gómez Ortega, Juan
Gámez García, Javier
Date
2022
Citation
Asensio Jiménez, P., Martínez Gila, D.M., Satorres Martínez, S., Estévez Estévez, S., Gómez Ortega, J., Gámez García, J. (2022) Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales. XLIII Jornadas de Automática: libro de actas, pp.956-963 https://doi.org/10.17979/spudc.9788497498418.0956
Abstract
[Resumen] El sector del aceite de oliva y de la aceituna de mesa representan ya el 3% del PIB total de Andalucía. Teniendo en cuenta las cifras que este hecho supone, predecir la cosecha campaña tras campaña es clave para definir estrategias de marketing. Dada la gran superficie de olivar existente resulta interesante la integración de tecnologías emergentes que puedan facilitar esta tarea de predicción. En este trabajo se estudia la viabilidad del uso de cámaras de visión por computador de espectro visible embarcadas en UAVs para valorar de forma cualitativa la carga frutal de los olivos de una plantación. Las imágenes adquiridas fueron etiquetadas y posteriormente utilizadas para entrenar tres arquitecturas CNN (AlexNet, GoogLeNet, y ResNet) por el método de transferencia de aprendizaje. La arquitectura que mejor rindió fue GoogLeNet, que posteriormente fue optimizada obteniendo finalmente una tasa de éxito del 90% a la hora de clasificar imágenes que mostraban regiones de olivos con carga alta, media, baja y descarte (no olivo).
Keywords
UAV
Olivar
Aceituna
Redes convolucionales
Procesado de imagen
Aprendizaje máquina
 
Editor version
https://doi.org/10.17979/spudc.9788497498418.0956
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback