Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (44ª. 2023. Zaragoza)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (44ª. 2023. Zaragoza)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aprendizaje de trayectorias vía demostraciones para vehículo marino no tripulado

Thumbnail
Ver/abrir
2023_Becerra_Mora_Aprendizaje de trayectorias_via_demostraciones_para_vehiculo_marino.pdf (10.24Mb)
Use este enlace para citar
http://hdl.handle.net/2183/33529
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Coleccións
  • Jornadas de Automática (44ª. 2023. Zaragoza) [154]
Metadatos
Mostrar o rexistro completo do ítem
Título
Aprendizaje de trayectorias vía demostraciones para vehículo marino no tripulado
Título(s) alternativo(s)
Trajectories learning by demonstrations for unmanned superficial vehicle
Autor(es)
Becerra-Mora, Yeyson
Quesada Conejero, Víctor
Rodríguez Castaño, Ángel
Acosta, J.Á.
Data
2023
Cita bibliográfica
Becerra-Mora, Y., Quesada Conejero, V., Rodríguez Castaño, A., Acosta, J.A. 2023. Trajectories learning by demonstrations for unmanned superficial vehicle. XLIV Jornadas de Automática, 1-5. https://doi.org/10.17979/spudc.9788497498609.001
Resumo
[Resumen] En los últimos años está habiendo un auge importante en el empleo de embarcaciones no tripuladas (USV en su acrónimo anglosajón) para diversas aplicaciones, debido al incremento en la eficiencia y seguridad que pueden aportar. Para ello es necesario que estos vehículos no tripulados puedan desplazarse en el entorno de un puerto de forma segura y cumpliendo con las restricciones que establecen la normativa náutica general y la específica del puerto. En la literatura se han propuesto diversos métodos de planificación, que no garantizan el cumplimiento de las restricciones marcadas por las boyas y otras señalizaciones según dichas normativas. En este artículo se propone una metodología que permite obtener las trayectorias que deben realizarse en diversas maniobras en un puerto mediante el aprendizaje automático de las operaciones realizadas por un patrón con experiencia, de forma que pueda sustituir al sistema de planificación convencional. Los datos empleados para el método de aprendizaje han sido obtenidos experimentalmente mediante pruebas realizadas con el USV Vendaval en el puerto de Ceuta.
 
[Abstract] In recent years there has been an important increase in the use of Unmanned Surface Vessels (USV) for different applications, due to the greater efficiency and safety they can provide. This requires that these unmanned vehicles can navegate safely in a port area and in compliance with the general and port-specific regulations. Various planning methods have been proposed in the literature, which do not guarantee compliance with the restrictions set by buoys and other signaling according to these regulations. This paper proposes a methodology to obtain the trajectories to be performed in various maneuvers in a port by automatic learning the operations performed by an experienced skipper, so that it can replace the conventional planning system. The data used for the learning method have been obtained experimentally through tests carried out with the USV Vendaval in the port of Ceuta.
 
Palabras chave
Aprendizaje por demostración
Vehículo de superficie no tripulado
Mezcla gaussiana
Lyapunov
Learning from demonstrations
Unmanned surface vehicle
Gaussian mixture
Lyapunov
 
Versión do editor
https://doi.org/10.17979/spudc.9788497498609.001
Dereitos
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
ISBN
978‐84‐9749‐860‐9

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións