dc.contributor.author | Coll-Josifov, Richard | |
dc.contributor.author | Masip-Álvarez, Albert | |
dc.contributor.author | Lavèrnia-Ferrer, David | |
dc.date.accessioned | 2022-09-05T11:50:18Z | |
dc.date.available | 2022-09-05T11:50:18Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Coll-Josifov, R., Masip-Álvarez, A., Lavèrnia-Ferrer, D. (2022) Deep learning classification applied to traffic accidents prediction. XLIII Jornadas de Automática: libro de actas, pp.964-971 https://doi.org/10.17979/spudc.9788497498418.0964 | es_ES |
dc.identifier.isbn | 978-84-9749-841-8 | |
dc.identifier.uri | http://hdl.handle.net/2183/31411 | |
dc.description.abstract | [Abstract] In this paper, YOLOv4 neural networks are trained with the goal of detecting and classifying objects from a street as seen from a drone. These have been trained on the VisDrone dataset, which is firstly validated through a custom-made graphic user interface. Then, several tests regarding performance, dataset composition and contrast have been carried out on the trained models. Results are compared to those from other previously existing models in order to evaluate their performance and analyse their shortcomings. The trained models are then used to detect and classify objects in a city scenario in real-time. Finally, an algorithm is proposed to track the objects, infer their future trajectories and predict potential collisions from the expected trajectories. | es_ES |
dc.description.sponsorship | This work has been co-financed by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project SaCoAV (ref. MINECO PID2020-114244RB-I00 ), by the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalonia 2014-2020 (ref. 001-P-001643 Looming Factory) and by the DGR of Generalitat de Catalunya (SAC group ref. 2017/SGR/482). | es_ES |
dc.description.sponsorship | Generalitat de Catalunya; 2017/SGR/482 | es_ES |
dc.description.sponsorship | Generalitat De Catalunya; 001-P-001643 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Universidade da Coruña. Servizo de Publicacións | es_ES |
dc.relation.uri | https://doi.org/10.17979/spudc.9788497498418.0964 | es_ES |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | * |
dc.subject | You Only Look Once (YOLO) | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Accident prediction | es_ES |
dc.title | Deep learning classification applied to traffic accidents prediction | es_ES |
dc.type | conference output | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.startPage | 964 | es_ES |
UDC.endPage | 971 | es_ES |
dc.identifier.doi | https://doi.org/10.17979/spudc.9788497498418.0964 | |
UDC.conferenceTitle | XLIII Jornadas de Automática | es_ES |
UDC.coleccion | Publicacións UDC | es_ES |