Mostrar o rexistro simple do ítem

dc.contributor.authorGómez-Rodríguez, Carlos
dc.contributor.authorVilares, David
dc.contributor.authorMuñoz-Ortiz, Alberto
dc.date.accessioned2025-01-22T18:14:40Z
dc.date.available2025-01-22T18:14:40Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/2183/40853
dc.description.abstract"We explored if implicit demographic information in prompts for large language models (LLMs) influences the linguistic features of generated text. Two LLMs were prompted to write news articles based on a title and summary, with prompts including demographic details like age, income, or nationality. The models were instructed not to explicitly reference these details. A total of 28,080 articles were generated by varying the demographics and topics. We calculated various linguistic metrics (e.g., sentence length, type-token ratio) and performed ANOVA, treating linguistic metrics as dependent variables and demographic categories as independent variables. Results indicate that demographic attributes do not significantly impact the linguistic metrics."es_ES
dc.language.isoenges_ES
dc.relation.urihttps://doi.org/10.17979/spudc.9788497498913.24
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectLarge language models (LLMs)es_ES
dc.titleDemographic Background Prompting Does Not Affect Linguistic Features on LLM-Generated News Textses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
UDC.startPage169es_ES
UDC.endPage176es_ES
UDC.coleccionPublicacións UDCes_ES


Ficheiros no ítem

Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem