Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demographic Background Prompting Does Not Affect Linguistic Features on LLM-Generated News Texts

Thumbnail
View/Open
XoveTIC_2024_proceedings_Parte24.pdf (391.4Kb)
Use this link to cite
http://hdl.handle.net/2183/40853
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña) [66]
Metadata
Show full item record
Title
Demographic Background Prompting Does Not Affect Linguistic Features on LLM-Generated News Texts
Author(s)
Gómez-Rodríguez, Carlos
Vilares, David
Muñoz-Ortiz, Alberto
Date
2024
Abstract
"We explored if implicit demographic information in prompts for large language models (LLMs) influences the linguistic features of generated text. Two LLMs were prompted to write news articles based on a title and summary, with prompts including demographic details like age, income, or nationality. The models were instructed not to explicitly reference these details. A total of 28,080 articles were generated by varying the demographics and topics. We calculated various linguistic metrics (e.g., sentence length, type-token ratio) and performed ANOVA, treating linguistic metrics as dependent variables and demographic categories as independent variables. Results indicate that demographic attributes do not significantly impact the linguistic metrics."
Keywords
Large language models (LLMs)
Editor version
https://doi.org/10.17979/spudc.9788497498913.24
Rights
Atribución 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback