Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demographic Background Prompting Does Not Affect Linguistic Features on LLM-Generated News Texts

Thumbnail
Ver/abrir
XoveTIC_2024_proceedings_Parte24.pdf (391.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/40853
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña) [66]
Metadatos
Mostrar o rexistro completo do ítem
Título
Demographic Background Prompting Does Not Affect Linguistic Features on LLM-Generated News Texts
Autor(es)
Gómez-Rodríguez, Carlos
Vilares, David
Muñoz-Ortiz, Alberto
Data
2024
Resumo
"We explored if implicit demographic information in prompts for large language models (LLMs) influences the linguistic features of generated text. Two LLMs were prompted to write news articles based on a title and summary, with prompts including demographic details like age, income, or nationality. The models were instructed not to explicitly reference these details. A total of 28,080 articles were generated by varying the demographics and topics. We calculated various linguistic metrics (e.g., sentence length, type-token ratio) and performed ANOVA, treating linguistic metrics as dependent variables and demographic categories as independent variables. Results indicate that demographic attributes do not significantly impact the linguistic metrics."
Palabras chave
Large language models (LLMs)
Versión do editor
https://doi.org/10.17979/spudc.9788497498913.24
Dereitos
Atribución 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións