Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a FAIR Dataset for Spanish Non-Functional Requirements

Thumbnail
Ver/abrir
XoveTIC_2023_proceedings_Parte30.pdf (170.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34160
Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution 4.0 International (CC BY 4.0)
Coleccións
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña) [52]
Metadatos
Mostrar o rexistro completo do ítem
Título
Towards a FAIR Dataset for Spanish Non-Functional Requirements
Autor(es)
Limaylla-Lunarejo, María-Isabel
Condori Fernández, Nelly
Rodríguez Luaces, Miguel
Data
2023
Resumo
[Abstract] Supervised Machine Learning algorithms (ML) have enhanced the performance of the automatic non-functional requirements (NFR) classification in the Requirements Engineering domain. However, the lack of public datasets, dealing with imbalanced datasets and reproducibility are current concerns in ML experiments. We conducted a quasi-experiment to generate a dataset of NFR in the Spanish Language, following the FAIR Principles. We collected 109 requirements from an open access repository of the University of A Coru˜ na, and performed a labeling process based in the categories and subcategories of the ISO/IEC 25010 quality model. Using a Fleiss’ Kappa test we obtained a substantial agreement (0.78) at the category level and a moderate agreement (0.48) when the classification is per subcategory supervised Machine Learning algorithms (ML) have enhanced the performance of the automatic non-functional requirements (NFR) classification in the Requirements Engineering domain. However, the lack of public datasets, dealing with imbalanced datasets and reproducibility are current concerns in ML experiments. We conducted a quasi-experiment to generate a dataset of NFR in the Spanish Language, following the FAIR Principles. We collected 109 requirements from an open access repository of the University of A Coruña, and performed a labeling process based in the categories and subcategories of the ISO/IEC 25010 quality model. Using a Fleiss’ Kappa test we obtained a substantial agreement (0.78) at the category level and a moderate agreement (0.48) when the classification is per subcategory
Palabras chave
Aprendizaje automático
Principios FAIR
Kappa de Fleiss
 
Descrición
Cursos e Congresos, C-155
Versión do editor
https://doi.org/10.17979/spudc.000024.30
Dereitos
Attribution 4.0 International (CC BY 4.0)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións