dc.contributor.author | Hervella, Álvaro S. | |
dc.contributor.author | Rouco, J. | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2024-04-15T10:50:37Z | |
dc.date.available | 2024-04-15T10:50:37Z | |
dc.date.issued | 2024-02 | |
dc.identifier.citation | Á. S. Hervella, J. Rouco, J. Novo, and M. Ortega, "Multi-Adaptive Optimization for multi-task learning with deep neural networks ", Neural Networks, Vol. 170, Pp. 254-265, Feb. 2024, doi: 10.1016/j.neunet.2023.11.038 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/36191 | |
dc.description | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG | es_ES |
dc.description.abstract | [Abstract]: Multi-task learning is a promising paradigm to leverage task interrelations during the training of deep neural networks. A key challenge in the training of multi-task networks is to adequately balance the complementary supervisory signals of multiple tasks. In that regard, although several task-balancing approaches have been proposed, they are usually limited by the use of per-task weighting schemes and do not completely address the uneven contribution of the different tasks to the network training. In contrast to classical approaches, we propose a novel Multi-Adaptive Optimization (MAO) strategy that dynamically adjusts the contribution of each task to the training of each individual parameter in the network. This automatically produces a balanced learning across tasks and across parameters, throughout the whole training and for any number of tasks. To validate our proposal, we perform comparative experiments on real-world datasets for computer vision, considering different experimental settings. These experiments allow us to analyze the performance obtained in several multi-task scenarios along with the learning balance across tasks, network layers and training steps. The results demonstrate that MAO outperforms previous task-balancing alternatives. Additionally, the performed analyses provide insights that allow us to comprehend the advantages of this novel approach for multi-task learning. | es_ES |
dc.description.sponsorship | This work is supported by Ministerio de Ciencia e Innovación, Government of Spain, through the RTI2018-095894-B-I00, PID2019-108435RB-I00, TED2021-131201B-I00, and PDC2022-133132-I00 research projects; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, through Grupos de Referencia Competitiva ref. ED431C 2020/24 and the postdoctoral fellowship ref. ED481B-2022-025. CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Cultura, Educación e Universidade, Xunta de Galicia, through the ERDF of the European Union (80%) and Secretaría Xeral de Universidades (20%). Funding for open access charge: Universidade da Coruña/CISUG. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2020/24 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED481B-2022-025 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier B.V. | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.neunet.2023.11.038 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Computer vision | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Gradient descent | es_ES |
dc.subject | Multi-task learning | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Optimization | es_ES |
dc.title | Multi-Adaptive Optimization for multi-task learning with deep neural networks | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Neural Networks | es_ES |
UDC.volume | 170 | es_ES |
UDC.startPage | 254 | es_ES |
UDC.endPage | 265 | es_ES |
dc.identifier.doi | 10.1016/j.neunet.2023.11.038 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Visión Artificial e Recoñecemento de Patróns (VARPA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACION Y CARACTERIZACION COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLOGICA: ESTUDIOS EN ESCLEROSIS MULTIPLE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/TED2021-131201B-I00/ES/DIAGNÓSTICO DIGITAL: TRANSFORMACIÓN DE LA DETECCIÓN DE ENFERMEDADES NEUROVASCULARES Y DEL TRATAMIENTO DE LOS PACIENTES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PDC2022-133132-I00/ES/MEJORAS EN EL DIAGNÓSTICO E INVESTIGACIÓN CLÍNICO MEDIANTE TECNOLOGÍAS INTELIGENTES APLICADAS LA IMAGEN OFTALMOLÓGICA | es_ES |