Mostrar o rexistro simple do ítem

dc.contributor.authorBorsich, Tayomara
dc.contributor.authorDomínguez, Xabier
dc.contributor.authorMartín Peinador, Elena
dc.date.accessioned2024-02-01T16:53:38Z
dc.date.issued2022
dc.identifier.citationBorsich, T., Domínguez, X., & Martín-Peinador, E. (2022). On the existence of topologies compatible with a group duality with predetermined properties. Topology and its Applications, 311, 107964. https://doi.org/10.1016/j.topol.2021.107964es_ES
dc.identifier.urihttp://hdl.handle.net/2183/35326
dc.descriptionVersión aceptada de https://doi.org/10.1016/j.topol.2021.107964es_ES
dc.description.abstract[Abstract:] The paper deals with group dualities. A group duality is simply a pair (G, H) where G is an abstract abelian group and H a subgroup of characters defined on G. A group topology τ defined on G is compatible with the group duality (also called dual pair) (G, H) if G equipped with τ has dual group H. A topological group (G, τ) gives rise to the natural duality (G, G∧), where G∧ stands for the group of continuous characters on G. We prove that the existence of a g-barrelled topology on G compatible with the dual pair (G, G∧) is equivalent to the semireflexivity in Pontryagin’s sense of the group G∧ endowed with the pointwise convergence topology σ(G∧, G). We also deal with k-group topologies. We prove that the existence of k-group topologies on G compatible with the duality (G, G∧) is determined by a sort of completeness property of its Bohr topology σ(G, G∧) (Theorem 3.3).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.topol.2021.107964es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectGroup dualityes_ES
dc.subjectCompatible topologyes_ES
dc.subjectEquicontinuous subsetses_ES
dc.subjectK-groupes_ES
dc.subjectKT-groupes_ES
dc.subjectG-barrelled groupes_ES
dc.subjectPontryagin semireflexive groupes_ES
dc.subjectComplete groupes_ES
dc.titleOn the existence of topologies compatible with a group duality with predetermined propertieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.date.embargoEndDate2024-04-01es_ES
dc.date.embargoLift2024-04-01
UDC.journalTitleTopology and its Applicationses_ES
UDC.volume311es_ES
UDC.startPage107964es_ES
dc.identifier.doi10.1016/j.topol.2021.107964
UDC.coleccionInvestigaciónes_ES
UDC.departamentoMatemáticases_ES
UDC.grupoInvGrupo de Métodos Numéricos en Enxeñaría (GMNI)es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem