Mostrar o rexistro simple do ítem
On the existence of topologies compatible with a group duality with predetermined properties
dc.contributor.author | Borsich, Tayomara | |
dc.contributor.author | Domínguez, Xabier | |
dc.contributor.author | Martín Peinador, Elena | |
dc.date.accessioned | 2024-02-01T16:53:38Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Borsich, T., Domínguez, X., & Martín-Peinador, E. (2022). On the existence of topologies compatible with a group duality with predetermined properties. Topology and its Applications, 311, 107964. https://doi.org/10.1016/j.topol.2021.107964 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/35326 | |
dc.description | Versión aceptada de https://doi.org/10.1016/j.topol.2021.107964 | es_ES |
dc.description.abstract | [Abstract:] The paper deals with group dualities. A group duality is simply a pair (G, H) where G is an abstract abelian group and H a subgroup of characters defined on G. A group topology τ defined on G is compatible with the group duality (also called dual pair) (G, H) if G equipped with τ has dual group H. A topological group (G, τ) gives rise to the natural duality (G, G∧), where G∧ stands for the group of continuous characters on G. We prove that the existence of a g-barrelled topology on G compatible with the dual pair (G, G∧) is equivalent to the semireflexivity in Pontryagin’s sense of the group G∧ endowed with the pointwise convergence topology σ(G∧, G). We also deal with k-group topologies. We prove that the existence of k-group topologies on G compatible with the duality (G, G∧) is determined by a sort of completeness property of its Bohr topology σ(G, G∧) (Theorem 3.3). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.topol.2021.107964 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Group duality | es_ES |
dc.subject | Compatible topology | es_ES |
dc.subject | Equicontinuous subsets | es_ES |
dc.subject | K-group | es_ES |
dc.subject | KT-group | es_ES |
dc.subject | G-barrelled group | es_ES |
dc.subject | Pontryagin semireflexive group | es_ES |
dc.subject | Complete group | es_ES |
dc.title | On the existence of topologies compatible with a group duality with predetermined properties | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | embargoed access | es_ES |
dc.date.embargoEndDate | 2024-04-01 | es_ES |
dc.date.embargoLift | 2024-04-01 | |
UDC.journalTitle | Topology and its Applications | es_ES |
UDC.volume | 311 | es_ES |
UDC.startPage | 107964 | es_ES |
dc.identifier.doi | 10.1016/j.topol.2021.107964 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Matemáticas | es_ES |
UDC.grupoInv | Grupo de Métodos Numéricos en Enxeñaría (GMNI) | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (ETSECCP) [826]