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Abstract. The paper deals with group dualities. A group duality is simply a pair (G,H)

where G is an abstract abelian group and H a subgroup of characters defined on G. A group

topology τ defined on G is compatible with the group duality (also called dual pair) (G,H)
if G equipped with τ has dual group H.

A topological group (G, τ) gives rise to the natural duality (G,G∧), where G∧ stands

for the group of continuous characters on G. We prove that the existence of a g-barrelled
topology on G compatible with the dual pair (G,G∧) is equivalent to the semireflexivity

in Pontryagin’s sense of the group G∧ endowed with the pointwise convergence topology

σ(G∧, G). We also deal with k-group topologies. We prove that the existence of k-group
topologies on G compatible with the duality (G,G∧) is determined by a sort of completeness

property of its Bohr topology σ(G,G∧) (Theorem 3.3).

For a topological abelian group (G, τ), denote by G∧ := CHom(G,T) the group of all
continuous characters on G. The weak topology associated to G∧ is defined as the weakest
topology on G for which all the elements of G∧ are continuous. It is a group topology which
will be denoted by τ+ (or by σ(G,G∧) if the duality (G,G∧) is the prevailing point of view).
Clearly, τ+ ≤ τ and it is the bottom element in the duality (G,G∧). By its relationship with
the Bohr compactification of (G, τ), τ+ is called the Bohr topology of (G, τ). It is precompact
and Hausdorff provided (G, τ) has sufficiently many continuous characters. The question of
when a precompact and Hausdorff group topology on an abelian group is the Bohr topology
corresponding to a locally compact group has been considered in [10], in [15] and recently in
[17]. The present paper was originated by a thorough reading of [17].

More explicitly, the main question in [17] was: If (G,w) denotes a totally bounded abelian
topological group (that is, precompact and Hausdorff), is there a locally compact topology on
G, say τ , such that τ+ = w? If such τ exists, it can be said in categorical language that (G,w)
is the Bohr reflection of (G, τ). The authors of [17] denote by B the class of all totally bounded
abelian groups which are the Bohr reflection of a locally compact group. In the present paper we
consider the question from another point of view. As a matter of fact a precompact Hausdorff
topological group (G,w) is in B if there is a locally compact topology in the duality (G,G∧),
where G∧ denotes the character group of (G,w). Since in particular, every locally compact
abelian group is g-barrelled, the question can be generalized to the following one:

Question 1. Let (G, τ) be an abelian topological group. Under which conditions on G or G∧

is there a g-barrelled topology in the duality (G,G∧)?

The g-barrelled groups were introduced in [7]. In Section 4 we formulate their definition,
and we obtain a necessary and sufficient condition for a duality (G,G∧) to contain g-barrelled
group topologies (Theorem 4.7).

2010 Mathematics Subject Classification. Primary 22A05; Secondary 22D35.
Key words and phrases. Group duality, compatible topology, equicontinuous subsets, k-group, kT-group,

g-barrelled group, Pontryagin semireflexive group, complete group.
The second and third authors thank the financial support of the Spanish AEI and FEDER UE funds. Grant:

MTM2016-79422-P. .

1

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/



2 TAYOMARA BORSICH, XABIER DOMÍNGUEZ, AND ELENA MARTÍN-PEINADOR

The existence of dualities (G,G∧) without g-barrelled topologies can be derived from deep
results of the papers [2], [3] and [14], where the so called “Mackey problem for groups” is solved
in the negative. More precisely, the authors of those papers present examples of topological
groups (G, τ) such that, the supremum of the family of all the topologies on G which are
locally quasi-convex and compatible with τ is not compatible with τ . The Mackey topology
on a topological group (G, τ) is defined as the maximum - provided it exists - of all locally
quasi-convex topologies on G compatible with τ ([19]). The above mentioned papers provide
thus examples of locally quasi-convex groups without a Mackey topology, which makes evident
the dissonance between the behaviour of locally convex spaces, and that of locally quasi-convex
groups. We remind the reader that the Mackey-Arens Theorem asserts that for a fixed locally
convex space (E, ρ), there exists a maximum in the family of all the topologies on E that are
locally convex and compatible with ρ.

A g-barrelled locally quasi-convex topology µ on a group G is always the maximum of all
the topologies which are locally quasi-convex and compatible with µ [7, 4.1]. Thus, whenever
the existence of a g-barrelled locally quasi-convex topology in a fixed duality (G,G∧) can be
guaranteed, it is unique and it is the Mackey topology. Consequently, if the Mackey topology
for a topological group (G, τ) does not exist, the dual pair (G,G∧) does not contain either
a g-barrelled topology on G. However, a Mackey topology may not be g-barrelled: these
relationships, together with a grading of the Mackey property, are deeply analyzed in [11].
In Theorem 4.7 we give a necessary and sufficient condition for the existence of a g-barrelled
topology in a group duality.

If in a given duality (G,G∧) there exists a locally quasi-convex g-barrelled, non locally
compact topology ν, then (G, ν+) /∈ B. In this way a wealth of examples of groups which are
not in B can be obtained, a complement to the results of [17].

The main results of the present paper are in Section 4. Under the mild condition that
a duality (G,G∧) is separated, we prove (Theorem 4.7) that the existence of a g-barrelled
topology µ on G such that (G,µ)∧ = G∧ is equivalent to the semireflexivity (in Pontryagin’s
sense) of the dual group G∧ endowed with the pointwise convergence topology σ(G∧, G). If
this holds, µ is precisely the compact-open topology τK on G considered as the dual group of
(G∧, σ(G∧, G)). Without requiring that τK be compatible with the original topology of G, we
characterize when (G, τK) is a g-barrelled group in the duality that it generates (Theorem 4.9).

In Section 3 we deal with the existence of a k-group topology in a general duality (G,G∧).
The k-groups, defined by Noble in [20], constitute a class of abelian topological groups that
includes the locally compact abelian ones. More generally, all the topological groups that are
k-spaces (in the ordinary sense of this term for topological spaces) are k-groups. However there
are k-groups in the sense of Noble that are not k-spaces (See 2.10). In Section 2 we clarify these
notions and also recall the kT-groups introduced in [5]. The kT-groups are relevant because of
their connection with completeness. In [6] they appear while proving that the Grothendieck
Completeness Theorem, well known in the context of locally convex spaces, does not admit a
natural generalization to locally quasi-convex groups.

We introduce the notion of kT-extension of a precompact group topology. According to the
property of being or not a kT-group, the family P of precompact Hausdorff topologies on an
abstract abelian group G can be split into the two well differentiated subfamilies:

(I) P1 formed by all those w ∈ P such that (G,w) is a kT-group. The elements w ∈ P1 give
rise to dualities (G,G∧) that contain at least one k-group topology (Theorem 3.3), which in
turn can be locally compact, or metrizable or none of them, as shown in Example 2.10.

(II) P2 formed by all those w ∈ P such that (G,w) is not a kT-group. The elements
w ∈ P2 produce dualities (G,G∧) which do not contain a k-group topology (Theorem 3.3).
Nevertheless, the kT-extension of each w ∈ P2 is a new precompact topology on G, which gives
rise to a group duality that contains k-group topologies (Theorem 3.7). Further, w and its
kT-extension produce the same family of compact subsets.
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In the last section we develop some results about the duality generated by a discrete group.
This is a particular case of dualities which contain a g-barrelled topology τ , such that (G, τ)
has the Glicksberg property.

1. Notation and Remarks

If G is an abelian group, the set of all homomorphisms from G to T will be denoted by
Hom(G,T), where T is the unit complex circle. The elements of Hom(G,T) are called charac-
ters and Hom(G,T) has a group structure with respect to the pointwise operation. We shall
write Homp(G,T) to indicate that Hom(G,T) is equipped with the pointwise convergence
topology.

A group duality is a pair (G,H) where G is an abelian group and H is a subgroup of
Hom(G,T). If H separates points of G, the duality is said to be separated.

If (G, τ) is a topological abelian group, its dual group or character group G∧ := CHom(G,T)
is the set of all continuous characters of G. It is a subgroup of Hom(G,T) and if it separates
points of G, we say that (G, τ) is MAP (a shorthand for “maximally almost periodic”).

Let A ⊆ G and B ⊆ G∧. The polar set of A is defined by

A▷ = {χ ∈ G∧ : ∀x ∈ A χ(x) ∈ T+}

and the inverse polar of B is defined by

B◁ = {x ∈ G : ∀χ ∈ B χ(x) ∈ T+}

where T+ := {e2πit : t ∈ [− 1
4 ,

1
4 ]}.

A subset A ⊆ G is quasi-convex if for every x ∈ G \ A there exists an element ϕ ∈ A▷ such
that ϕ(x) /∈ T+. The quasi-convex hull of a subset M ⊆ G is the smallest quasi-convex subset
of G that contains M . It is straightforward to prove that it coincides with M▷◁; in particular
M is quasi-convex if and only if M = M▷◁. The topological group (G, τ) is said to be locally
quasi-convex if it admits a basis of neighborhoods of zero formed by quasi-convex subsets.

For a topological group (G, τ), the finest among all the locally quasi-convex topologies on
G coarser than τ is the locally quasi-convex modification of τ . It will be denoted by Qτ and
has as a basis of 0-neighborhoods the family B = {U▷◁, U ∈ N}, where N stands for the
τ -neighborhood system of the neutral element.

Let (G, τ) be a topological group. A subset S ⊆ G∧ is equicontinuous with respect to τ if
and only if S ⊆ U▷ for some τ -neighborhood of zero U in G. This is the simplest formulation,
for abelian topological groups and families of continuous characters, of the well-known notion
of equicontinuous set of mappings in the context of uniform spaces.

For an abelian group G and a subgroup L of characters on G, σ(G,L) will denote the weak
topology on G with respect to the family L. If we start with a topological group (G, τ), we will
replace σ(G,G∧) by τ+, whenever this symbol is easier to handle.

Symmetrically, σ(G∧, G) denotes the weak topology on G∧ with respect to the evaluation
mappings corresponding to the elements of G.

If the context is clear, G∧ also denotes the character group endowed with the compact-
open topology. The latter is the natural topology to deal with reflexivity in Pontryagin’s
sense, so we often use the term Pontryagin dual to underline that G∧ carries the compact-open
topology.

If τ1 and τ2 are group topologies on G we will say that they are compatible if (G, τ1)
∧ =

(G, τ2)
∧. For a dual pair (G,H) a topology τ on G is said to be compatible with the duality

(G,H) or simply to be in the duality (G,H) if (G, τ)∧ = H.
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In the sequel it will be implicitly understood that all the groups considered are abelian. The
terms “compact” or “precompact” do not include the Hausdorff property.

2. A short trip through k-spaces, k-groups and kT-groups

Although the notion of a k-space is well known, there is no uniformity in the literature
whether it might be defined in the framework of Hausdorff spaces or simply in the context
of topological spaces. Therefore we make precise our starting point and the properties which
require further assumptions.

A topology τ on a set X is called a k-topology if the following condition holds:

Whenever H ⊆ X is such that H ∩K is τ -closed in K for every τ -compact subset K of X,
then H is closed in τ .

If τ is a k-topology on X, the pair (X, τ) is called a k-space. As a matter of fact, there is a
k-topology associated to each topology τ on a set X. It is commonly called the k-refinement
of τ (in the literature, also the k-extension), and it is defined by its family of closed sets as
follows:

Definition 2.1. The k-refinement k(τ) of a topology τ on a set X is defined by: C ⊂ X is
closed in k(τ) if C ∩K is τ -closed in K, for every τ -compact subset K ⊂ X. The pair (X, k(τ))
is also called the k-refinement of (X, τ).

Clearly k(τ) is well defined, it is a k-topology and τ ≤ k(τ). The equality holds if τ is already
a k-topology.

The k-refinement k(τ) of a topology τ on a set X gives rise to the same compact subsets
as τ . With the additional assumption that (X, τ) is Hausdorff, it holds that k(τ) is the finest
topology on X with this property. For this reason some authors define the k-refinement only
for a Hausdorff topology τ . In order to avoid confusion, we provide a proof of these facts.

Proposition 2.2. Let (X, τ) be a topological space and let k(τ) be the k-refinement of τ . Then
the following statements hold:

(1) τ and k(τ) give rise to the same compact subsets.
(2) τ and k(τ) induce the same topology on any compact K ⊂ X.
(3) For every topological space (Y, µ), a function f : X → Y such that the restriction f|K

to any compact subset K ⊂ X is continuous, is necessarily continuous with respect to
k(τ).

Furthermore, k(τ) is the finest among the topologies on X which satisfy the condition of (2)
or (3). If (X, τ) is Hausdorff, k(τ) is also the finest among the topologies on X which have the
same compact subsets as τ .

Proof. (1) Since τ ≤ k(τ), every k(τ)-compact is τ -compact.
For the converse, fix a τ -compact subset L ⊂ X. In order to show that L remains k(τ)-
compact, take a cover U ⊂ k(τ) of L. By the definition of the topology k(τ), for every U ∈ U
the intersection U ∩L is open in L. Since L is compact, the cover {U ∩L : U ∈ U} has a finite
subcover, and so does U .

(2) follows from (1) and the definition of k(τ).

Finally (3) follows from the equality f−1(D) ∩K = (f|K)−1(D) for any D ⊂ Y and K ⊂ X
and the definition of k(τ).

It is straightforward to prove that k(τ) is the finest topology on X satisfying (2) or (3).

In order to prove the last assertion, assume that µ is a topology on X which gives rise to
the same compact subsets as τ . If C ⊂ X is µ-closed, for every K ⊂ X compact, C ∩ K is
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µ-compact, and by the assumption, it is also τ -compact. Since (X, τ) is Hausdorff, C ∩ K is
τ -closed. This holds for any τ -compact subset K, therefore C is k(τ)-closed and µ ≤ k(τ).
The requirement on the space X to be Hausdorff is used when claiming that every compact
subset is closed. □

Two topologies τ1 and τ2 on a set X which have the same family of compact subsets may not
induce the same topology on the compact subsets of both, as the following example shows. This
is due to the unpleasant fact that in a non-Hausdorff space a compact subset is not necessarily
closed

Example. Let X = {1/n, n ∈ N} ∪ {0}, let τ1 be the topology on X induced by the
Euclidean of R and τ2 the topology whose open sets are all the subsets of X that do not contain
{0}, together with the total set X. Clearly τ1 and τ2 have the same family of compact subsets:
namely, every finite F ⊂ X, and every subset that contains {0}. However they do not induce
the same topology on the compact subset {1/2n, n ∈ N} ∪ {0}.

On the other way round, if the assumption is that both topologies induce the same topology
on the compact subsets of one of them, say τ1, then K1 ⊂ K2, where Ki are the respective
families of compact subsets. It follows that K1 = K2 under the assumption of coincidence of
the induced topologies in each τi-compact, for i ∈ {1, 2}.

Lemma 2.3. Let F = {τi, i ∈ I} be a family of Hausdorff topologies on a set X which give
rise to the same compact subsets. The elements of F induce the same topology on the common
compact subsets of X. If τ1 is the supremum of F , τ1 has also the same family of compact
subsets and (τ1)|K = (τi)|K for every compact K ⊂ X.

Proof. In order to prove the first assertion, fix a τi-compact subset K. Since τi is Hausdorff,
any C ⊂ K is τi-closed if and only if it is τi-compact. Thus, by the assumption, the τi-closed
subsets of K are the same for every i ∈ I.
Let us see now that every τi-compact is also τ1-compact. As above, let K ⊂ X be τi-compact.
Pick a net S := {xj , j ∈ J} in K. It has a τi-convergent subnet. Taking into account that the
topologies τi|K coincide for all i ∈ I, without loss of generality we can assume that there exists

x ∈ K such that xj
τi−→ x, ∀i ∈ I.

Let us prove that S also converges to x in τ1. A basic τ1-neighborhood of x has the form

V = ∩n
m=1Vim , where Vim is a neighborhood of x in τim . Since xj

τim−→ x, for m = 1, . . . , n, the
net is eventually in Vi1 , . . . , Vin . Now J is a directed set, therefore the net is also eventually in

V = ∩n
m=1Vim . As V was a basic arbitrary τ1-neighborhood of x, it follows that xj

τ1−→ x. □

The k-refinement of a group topology may not be a group topology (Example 2.10). Around
the 70’s Noble defined the k-groups, a notion weaker than that of a k-space in the context
of topological groups. The kT-groups were defined in [5] in the context of abelian topological
groups. For the reader’s convenience we state both definitions:

Definition 2.4. A topological group (G, τ) is a k-group if for every topological group (H,µ)
and every homomorphism f : G → H the following holds:

If f|K is continuous for any compact K ⊂ G, then f is continuous.

For further use we write the following property, whose proof can be seen in [20, 1.1]:

Lemma 2.5. A topological group (G, τ) is a k-group iff τ is the finest among all the group
topologies on G that coincide with τ on the τ -compact subsets.

To each topological group there corresponds a k-group structure, defined as follows:

For a topological group (G, τ), let kg(τ) be the finest of all the group topologies on G that
coincide with τ on every τ -compact subset K ⊂ G. Clearly (G, kg(τ)) is a k-group, which
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might be called the k-group modification of (G, τ). Also the topology kg(τ) is called the k-
group modification of τ . If (G, τ) is Hausdorff, then kg(τ) is also the finest group topology of
all those whose compact subsets are the τ -compact ones.

Observe that if a topological group (G, τ) is a k-space, it is in particular a k-group. However
there are k-groups which are not k-spaces as shown in Example 2.10

Definition 2.6. A topological group G is a kT-group if every character f : G → T such that
its restriction f|K to any compact K ⊂ G is continuous, must be continuous.

Every k-group is a kT-group, as a consequence of their definitions. The converse does not
hold. A family of examples of kT-groups which are not k-groups can be modelled through the
following proposition.

Proposition 2.7. Let (G, τ) be a nonprecompact topological group. If (G, τ) is a k-group with
Glicksberg property, then (G, σ(G,G∧)) is a kT-group which is not a k-group.

Proof. Let f : G → T be a homomorphism such that f|K is continuous with respect to the
topology induced by σ(G,G∧) on every compact subset K ⊂ G. From σ(G,G∧) < τ we deduce
that f|K is τ -continuous for every τ -compact subset K. Since (G, τ) is a k-group, we obtain
that f ∈ (G, τ)∧ = (G, σ(G,G∧))∧. Thus (G, σ(G,G∧)) is a kT-group. Taking into account the
inequality σ(G,G∧) < τ , Lemma 2.5 implies that it is not a k-group. □

For a Hausdorff topological group (G, τ) there might exist several compatible kT-group
topologies on G with the same compact subsets as τ . On the other hand there is a unique
k-group topology whose compact subsets are precisely the τ -compact subsets, namely kg(τ).
We will see below that the k-group modification kg(τ) is compatible with τ if and only if (G, τ+)
is a kT-group.

For two group topologies on a group G, the property of “giving rise to the same compact
subsets” is in some sense complementary to that of “being compatible”, as expressed in the
following proposition.

Proposition 2.8. Let G be an abelian group and let τ1, τ2 be group topologies on G such that
τ1 ≤ τ2.

(1) Assume τ1 and τ2 are compatible topologies.
If (G, τ2) is a kT-group, then (G, τ1) is also a kT-group.

(2) Assume τ1 and τ2 are Hausdorff and give rise to the same family of compact subsets.
If (G, τ1) is a kT-group, then also (G, τ2) is a kT-group and both topologies are compat-
ible.

In particular, if a topological group (G, τ) is a kT-group, then also (G, τ+) is a kT-group.

Proof. (1) Denote by Ki the family of τi-compact subsets, i ∈ {1, 2}. From τ1 ≤ τ2 we obtain
K2 ⊆ K1. Let f : G → T be any homomorphism such that f |K is τ1-continuous for all
K ∈ K1. In particular, f |K is τ2-continuous for all K ∈ K2. Since (G, τ2) is a kT-group, then
f ∈ (G, τ2)

∧ = (G, τ1)
∧; therefore, (G, τ1) is a kT-group.

(2) Let f : G → T be any homomorphism such that f |K is τ2-continuous for allK ∈ K2 = K1.
By Lemma 2.3, f |K is also τ1-continuous. Since (G, τ1) is a kT-group, then f ∈ (G, τ1)

∧ ⊆
(G, τ2)

∧, therefore (G, τ2) is a kT-group. Further, it also holds (G, τ2)
∧ ⊆ (G, τ1)

∧: in fact,
every f ∈ (G, τ2)

∧ satisfies f |K is τ2-continuous and by Lemma 2.3 τ1-continuous, for all
K ∈ K2 = K1. Thus, f ∈ (G, τ1)

∧ and τ1 and τ2 are compatible.

The last statement follows from (1), since τ+ is compatible with τ . □

Remark 2.9. If a topological group (G, τ) has the Glicksberg property, then all the group
topologies on G which lie between τ+ and τ are simultaneously kT-group topologies or else
none of them is a kT-group topology.
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Next, we present an example of a k-group which is not a k-space. Its k-refinement is not
even a topological group.

Example 2.10. A k-group whose k-refinement is not a topological group.

Claim 1. The product RR of c real lines is not a k-space. Nevertheless, it is a k-group.

Proof. The proof of the first claim can be developed through the following hint provided in
Kelley’s book [18]. Let A ⊂ RR be defined by:

x = (xr)r∈R ∈ A ⇔ there exists m ∈ Z and F ⊂ R with |F | ≤ m and m ≥ 1, such that:{
1) xr = m, ∀r ∈ R \ F
2) xr = 0, if r ∈ F

It is easy to prove that A = A ∪ {0}, therefore A is not closed. However, for every compact
K ⊂ RR, A ∩K is closed in K. Thus RR is not a k-space.

The fact that it is a k-group follows from [21, Theorem 5.7], where it is proved that the
product of k-groups is a k-group. Obviously, each factor R is a k-space, therefore also a k-
group. □

Claim 2. Denote by π the product topology on RR, and let k(π) be its k-refinement. Then
(RR, k(π)) is not a topological group.

Proof. As pointed out in Claim 1, RR endowed with the product topology π is not a k-space.
If its k-refinement k(π) were a group topology, (RR, k(π)) would be a k-group, with the same
compact subsets as (RR, π). Since (RR, π) is already a k-group, it must be k(π) = π. This
contradicts the fact that π is not a k-space topology and therefore π ̸= k(π). □

3. The kT-extension of a precompact topology

The goal of this section is to determine conditions under which the existence of k-group
topologies in a fixed duality (G,G∧) can be guaranteed. The kT-groups appear in this context
because of the following result:

Lemma 3.1. [5, 6.1.5] A topological group (G, τ) is a kT-group if and only if kg(τ) is compatible
with τ , where kg(τ) is the k-group modification of τ .

Proof. Let (G, τ) be a a kT-group. Then τ ≤ kg(τ) implies (G, τ)∧ ⊂ (G, kg(τ))
∧.

For the other inclusion, let f : G → T be in (G, kg(τ))
∧. From the fact that τ ≤ kg(τ) ≤ k(τ)

and Proposition 2.2 it follows that τ and kg(τ) admit the same family of compact sets and
induce the same topology on them. Thus, f|K is τ -continuous for every τ -compact K ⊂ G.
Since (G, τ) is a kT-group, f is τ -continuous and f ∈ (G, τ)∧.
Conversely, assume (G, τ)∧ = (G, kg(τ))

∧. Let f : G → T be a homomorphism such that f|K
is τ|K-continuous for every compact K ⊂ G. By the definition of kg(τ), f must be kg(τ)-
continuous. Thus, f ∈ (G, kg(τ))

∧ = (G, τ)∧ and (G, τ) is a kT-group. □

The kT-groups share with the k-groups the following property:

Lemma 3.2. [5, 6.1.6] Let (G, τ) be a kT-group. Then G∧ endowed with the compact-open
topology is complete.

The existence of kT-topologies in a fixed duality (G,G∧) is completely determined by the
behaviour of the bottom topology σ(G,G∧) (Proposition 2.8). We prove next that also the
existence of k-group topologies in (G,G∧) is determined by σ(G,G∧).

Theorem 3.3. Let (G, τ) be a topological group, and G∧ its character group. The following
statements are equivalent:
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(1) There is at least one k-group topology on G compatible with the duality (G,G∧).
(2) τ+ is a kT-group topology.

Proof. (1) ⇒ (2) Assume that µ is a k-group topology in the duality (G,G∧). This means that
(G,µ)∧ = G∧. In particular, µ is a kT-group topology and by (1) of Proposition 2.8, µ+ is also
a kT-group topology. Since µ is compatible with τ , τ+ = µ+ and the assertion follows.
(2) ⇒ (1) Conversely, if (G, τ+) is a kT-group, by Lemma 3.1 we obtain that kg(τ

+) is a k-group
topology on G compatible with τ+. In other words, kg(τ

+) is in the duality (G,G∧). □

Remarks 3.4. (i) Observe that in a duality (G,G∧) there might be several compatible k-
group topologies. For instance, in the duality (c0(T),Z(N)) presented and studied in [12],
the maximum and the minimum of all the locally quasi-convex compatible topologies
are both metrizable, thus both are compatible locally quasi-convex k-group topologies.

(ii) There is at most one complete metrizable locally quasi-convex topology on a group G
with a fixed dual group G∧. As proved in [7], such a topology is the Mackey topology
on G for the corresponding duality (G,G∧).

(iii) For a fixed separated duality (G,G∧) let µ be a compatible topology on G, and let Kµ

be the set of µ-compact subsets of G. Assign to Kµ the k-group topology it generates
on G, say kg(µ). Then, by Lemma 3.1, kg(µ) is compatible with the duality (G,G∧), if
and only if (G,µ) is a kT-group. Thus, the set of k-group topologies compatible with
the duality (G,G∧) is in 1-1 correspondence with the set of families Kµ for µ a kT-group
topology in the dual pair (G,G∧).

Let us denote by P the family of precompact topologies on an abelian abstract group G,
and by P1 the subfamily of those w ∈ P such that (G,w) is a kT-group. As proved in Theorem
3.3, the elements w ∈ P2 := P \ P1 produce dualities (G,G∧) which do not contain k-group
topologies. We next define the kT-extension of w ∈ P2, a sort of associated precompact topology
which gives rise to a new duality which contains k-group topologies.

Notation. Denote by M the family of w-compact subsets of a precompact group (G,w).
Let H be the set of all the characters f ∈ Hom(G,T) such that f|K is w-continuous, ∀K ∈ M.

Definition 3.5. Let (G,w) be a precompact group. The weak topology on G relative to H,
henceforth denoted τH will be called the kT-extension of w.

Clearly τH is a precompact topology on G, and (G, τH)∧ = H by [7, 3.7]. Consequently,
G∧ := (G,w)∧ ⊂ H, and w ≤ τH. Observe that the equality τH = w implies that (G,w) is
already a kT-group.

Some properties of the kT-extension.

Proposition 3.6. Let (G,w) be a precompact group and let τH be the kT-extension of w. Then,

(1) τH and w give rise to the same family M of compact subsets of G. Further, w|K =
(τH)|K , for all K ∈ M.

(2) τH is a kT-group topology.
(3) τH is the maximum in the family of all precompact topologies on G that coincide with

w on the w-compact subsets of G.
(4) If w is Hausdorff, τH is the maximum in the family of all precompact Hausdorff topolo-

gies on G with the same compact subsets as w.

Proof. (1) From the fact w ≤ τH, we only need to prove that a fixed w-compact subset K ⊂ G
is also τH-compact. To this end, pick a net S := {xi, i ∈ I} with range in K. Since K is
w-compact, S has a w-convergent subnet. Without loss of generality, assume directly that

xi
w−→ x. For every f ∈ H it holds f(xi)−→f(x) in T. Therefore, taking into account that

(G, τH) is precompact with dual H, xi
τH−→ x. Thus, K is also τH-compact and further induces

on K the same topology as w.
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(2) This is obvious from (1) together with the fact that (G, τH)∧ = H.

(3) Assume now that u is a precompact topology on G such that u|K = w|K for every
w-compact K ⊂ G. If L = (G, u)∧, every f ∈ L is clearly in H. Therefore, u ≤ τH.

(4) The assertion follows from (3) and Lemma 2.3.

□

For a topological group (G, τ) such that τH ̸= τ+, the duality (G,G∧) does not admit any
k-group topology, as seen in Theorem 3.3. However, τH gives rise to a sort of “extended duality”
which improves this lack, as shown next.

Theorem 3.7. Let (G, τ) be a topological group, and τH the kT-extension of τ+. Then, τH is
a kT-group topology on G compatible with the duality (G,H). Further, τH and τ+ give rise to
the same family of compact subsets of G.

Proof. By (2) of Proposition 3.6, τH is a kT-group topology. Since (G, τH)∧ = H, according to
Lemma 3.1, kg(τH) is a k-group topology compatible with the duality (G,H). The last assertion
is proved by (1) in Proposition 3.6. □

The family P of precompact topologies on a fixed abelian group G, mentioned in the Intro-
duction, offers the following picture:

• If (G,w) is a kT-group (that is, w ∈ P1), there exist k-group topologies on G compatible
with the duality (G,G∧), where G∧ = (G,w)∧. They might be locally compact or
metrizable or none of them, as shown by the example RR (2.10).

• If (G,w) is not a kT-group (that is, w ∈ P2), the kT-extension of w, which we have
called τH, gives rise to a new duality (G,H), with k-group topologies. The latter are
not compatible with w. In fact, if λ is one of them, (G,λ)∧ = H ̸= (G,w)∧.

Proposition 3.8. Let (G,w) be a precompact group with w ∈ P2, and let τH be the kT-
extension of w. Then, the Pontryagin dual of (G, τH) is complete and contains (G,w)∧ as a
topological subgroup. However, (G, τH)∧ may not be the completion of (G,w)∧.

Proof. By Lemma 3.2, (G, τH)∧ is complete. Clearly, (G,w)∧ ⊂ (G, τH)∧. By (1) of Proposition
3.6, w and τH give rise to the same compact subsets, therefore the dual group (G,w)∧ is a
topological subgroup of (G, τH)∧, where both are considered with the compact-open topology.

The last assertion is obtained from the fact that G∧ := (G,w)∧ may itself be complete and
distinct from (G, τH)∧ = H, therefore non dense in (G, τH)∧ = H. The following example
provides a proof of it. □

Example 3.9. A precompact group G whose kT-extension does not coincide with its
completion.

We first state some auxiliary tools before the explicit example, described below in Claim 1.

Let L2[0, 1] be the Hilbert space of square integrable functions on [0, 1], and let L :=
L2
Z[0, 1] ⊂ L2[0, 1] be the subgroup formed by all the almost everywhere integer valued func-

tions, equipped with the induced topology. This group is considered in [1, Section 11], where a
remarkable proof of the following fact is given:

(*) The Pontryagin dual of L is topologically isomorphic to the dual of L2[0, 1], say

L∧ ≈ (L2[0, 1])∧

through the restriction mapping.

The following properties of L and L∧ are needed for our argument:
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(1) L is not Pontryagin reflexive. In fact, the natural mapping from L → L∧∧ is a non-
surjective embedding. This derives from (*) and from the Pontryagin reflexivity of
L2[0, 1] as a Banach space. Thus, L∧∧ ≈ L2[0, 1]∧∧ ≈ L2[0, 1].

(2) L is metrizable and complete, therefore its dual group L∧ endowed with the compact-
open topology c(L∧, L) is a k-space ([1], [8]).

(3) Every σ(L∧, L)-compact subset of L∧ is equicontinuous with respect to L.
(For a proof see [7]. The term g-barrelled defines this property, see Section 4, 4.2).

(4) The natural mapping L → (L∧, σ(L∧, L))∧ is a topological isomorphism.
(This derives from (3) plus the local quasi-convexity of L. A direct proof can be seen
in [6].)

(5) c(L∧, L) and σ(L∧, L) induce the same topology on any M ⊂ L∧ which is equicontin-
uous with respect to L. (This fact is well known).

Claim 1. The precompact group G := (L∧, σ(L∧, L)) has the following properties:

(i) It is not a kT-group.
(ii) The kT-extension of σ(L∧, L) is precisely σ(L∧, L∧∧).
(iii) The group (L∧, σ(L∧, L∧∧))∧ is complete, but it is not the completion of G∧ = (L∧, σ(L∧, L))∧.

Proof. (i) follows from (ii), taking into account that σ(L∧, L) ̸= σ(L∧, L∧∧) (as stated in
(1)).
(ii). Fix a character f : (L∧, σ(L∧, L)) → T such that f|K is continuous for every σ(L∧, L)-
compact K ⊂ L∧. Since σ(L∧, L) ≤ c(L∧, L), f|K is continuous with respect to c(L∧, L)|K . By
(2), f is continuous with respect to the compact-open topology of L∧, therefore f ∈ L∧∧.
On the other hand, from L∧∧ ≈ L2[0, 1]∧∧ we deduce that every element in L∧∧ is an evaluation
x̃ for some x ∈ L2[0, 1]. Thus, the kT-extension of σ(L∧, L) is σ(L∧, L∧∧).
(iii) The completeness of (L∧, σ(L∧, L∧∧))∧ follows from Lemma 3.2.
By (4), (L∧, σ(L∧, L))∧ is topologically isomorphic to L, and the latter is complete as stated in
(2). Thus, (L∧, σ(L∧, L))∧ is a complete ( thus, closed) proper subgroup of (L∧, σ(L∧, L∧∧))∧.

4. On the existence of g-barrelled topologies in a group duality

The g-barrelled groups were introduced in [7]. They constitute a class of abelian topological
groups which is, in some sense, the counterpart of the class of barrelled spaces, well-known
objects in the theory of locally convex spaces. Before stating the definition of g-barrelled
groups, we give convenient notation and provide elementary background to deal with them.

Notation 4.1. For a topological group (G, τ), the symbol K will stand for the family of all
σ(G∧, G)-compact subsets of G∧. The topology on G of uniform convergence on the members
of K will be denoted by τK.

The family {K◁, K ∈ K} describes a basis of zero-neighborhoods for the topology τK on
G. Having a basis of quasi-convex sets, τK is a locally quasi-convex topology. On the other
hand, any locally quasi-convex topology ν on a group G is totally determined by the family
E of all the equicontinuous subsets that it produces in its dual group (G, ν)∧. More precisely,
ν is the topology of uniform convergence on the sets of E , and {L◁, L ∈ E} is a basis of zero
neighborhoods for ν. A thorough study of this topic is done in [11].

Definition 4.2. [7] A topological group (G, τ) is g-barrelled if every σ(G∧, G)-compact subset
of G∧ is equicontinuous with respect to τ . The term g-barrelled also applies to the topology τ .

The Hausdorff abelian topological groups that are locally compact, or complete metrizable, or
pseudocompact, or locally pseudocompact, or precompact Baire bounded torsion are g-barrelled
groups (see [7], [16], [13], [9]).

Remarks 4.3. (i) Local quasi-convexity is not required in the definition of a g-barrelled
group. Nevertheless, if (G, τ) is a g-barrelled group, and Qτ is the locally quasi-convex
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modification of τ , then (G, τ)∧ = (G,Qτ)∧ and (G,Qτ) is g-barrelled and locally quasi-
convex.

(ii) There is at most one g-barrelled locally quasi-convex topology on a topological group
G which is compatible with the duality (G,G∧).

The statement contained in (i) follows from the fact that the equicontinuous subsets with
respect to τ and Qτ coincide ([11, Proposition 7.1]). The proof of (ii) is straightforward.

An interesting feature of locally quasi-convex g-barrelled groups is that they are topologically
isomorphic to duals of precompact groups. For further use we express this property as a lemma.

Lemma 4.4. [4, 2.6] Let (G, τ) be a locally quasi-convex, g-barrelled group. Then, the natural
evaluation mapping e : (G, τ) → (G∧, σ(G∧, G))∧ is a topological isomorphism.

As we explained in the introduction, there are group dualities without g-barrelled topologies.
Now the question is to find conditions on a topological group (G, τ) or in its dual G∧, which
imply the existence of g-barrelled topologies on G compatible with τ . By the remark (i) in 4.3,
the question may be equivalently reformulated as follows: under which conditions is there a
g-barrelled locally quasi-convex topology in a fixed duality (G,G∧)?

Proposition 4.5. Let (G, τ) be a MAP topological group. There exists a g-barrelled locally
quasi-convex topology on G in the dual pair (G,G∧) if and only if τK is compatible with τ .

Proof. Observe first that all the topologies compatible with τ produce, in the common dual
group G∧, the same family of σ(G∧, G)-compact subsets as τ . In other words, the family K is
an invariant of the duality (G,G∧).

Assume now that τK is compatible with τ . Clearly, every K ∈ K is equicontinuous with
respect to τK. So, as indicated in Remark 4.3 (ii), τK is the unique g-barrelled, locally quasi-
convex topology on G which is in the dual pair (G,G∧).

For the converse implication, we prove first that the existence of a g-barrelled locally quasi-
convex topology µ on G compatible with the pair (G,G∧) implies µ = τK. Assume µ meets the
mentioned requirements. Choose V ⊂ G a quasi-convex neighborhood of zero in µ. Then V ▷

is σ(G∧, G)-compact, and therefore V ▷◁ is a neighborhood of zero. From V ▷◁ = V , we obtain
µ ≤ τK. For the converse inequality, fix K ∈ K. Since (G,µ) is g-barrelled, K is equicontinuous
with respect to µ. Thus, it exists a µ-neighborhood of zero W such that W ⊂ K◁. This implies
that τK ≤ µ. □

By remark (i) in 4.3, if τK is not compatible, there are no g-barrelled topologies in the
dual pair. Next we give a necessary and sufficient condition for τK to be compatible with τ ,
or equivalently, to be compatible with σ(G,G∧). We recall that a topological group (G, τ) is
semireflexive if the canonical mapping α : G → G∧∧ is surjective.

Proposition 4.6. Let (G, τ) be an abelian MAP topological group. The following statements
are equivalent:

(1) τK is compatible with σ(G,G∧), that is (G, τK)
∧ = G∧.

(2) The group (G∧, σ(G∧, G)) is semireflexive.

Proof. The proof is an easy consequence of the following argument. By Comfort-Ross Theorem,
(G∧, σ(G∧, G))∧ can be algebraically identified with G by means of the evaluation mapping
e : G → (G∧, σ(G∧, G))∧, defined by x 7→ x̃ : ϕ 7→ ϕ(x). On the other hand the topology for
the Pontryagin dual (G∧, σ(G∧, G))∧ is the topology of uniform convergence on the σ(G∧, G)-
compact subsets of G∧. A zero neighborhood basis for (G∧, σ(G∧, G))∧ is given by the family
{K▷, K ∈ K}, whilst a zero neighborhood basis for (G, τK) is given by the family {K◁, K ∈ K}.
The direct and inverse polars can be identified since e is bijective and e(K◁) = K▷. Thus, e is
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a topological isomorphism:

(G, τK)
e
≈ (G∧, σ(G∧, G))∧

Taking now duals in both sides we obtain:

(G, τK)
∧ ≈ (G∧, σ(G∧, G))∧∧

In order to prove that (1) ⇒ (2), assume that τK is compatible with τ , that is (G, τK)
∧ = G∧.

From the last isomorphism, it follows that (G∧, σ(G∧, G)) is semireflexive.
The implication (2)⇒ (1) also follows from the mentioned isomorphism. □

The results of Propositions 4.5 and 4.6 yield the following:

Theorem 4.7. Let (G, τ) be a MAP topological group. The following assertions are equivalent:

(1) There exists a g-barrelled topology on G compatible with the duality (G,G∧).
(2) (G∧, σ(G∧, G)) is semireflexive.
(3) The topology τK on G is compatible with τ .

For a MAP topological group (G, τ) which does not satisfy the conditions of the preceding
theorem, it is natural to ask if (G, τK) can still be g-barrelled in the new duality it generates.
We provide below a result in this line. First, recall the notion of determined subgroup.

Definition 4.8. A subgroup Y of an abelian topological group (X, τ) is said to determine X
if the inclusion i : (Y, τ|Y ) → (X, τ) has a dual mapping i∧ : (X, τ)∧ → (Y, τ|Y )

∧ which is a
topological isomorphism. It is frequent to call Y a determined subgroup of X.

The above mentioned dual groups carry the compact-open topology, in other words they
are Pontryagin duals. Clearly, the restriction mapping i∧ is continuous without additional
conditions on X or Y . If Y is dense in X, then i∧ is monomorphism. Thus, the only specific
property to be a determined subgroup is that the mapping i∧ must be open. This is achieved
if for every compact set K ⊂ X there is a compact set L ⊂ Y such that i∧(K▷) ⊃ L▷. In what
follows we relax this expression and simply say that L▷ ⊂ K▷, which permits also to say that
the compact-open topologies in X∧ and Y ∧ coincide.

Theorem 4.9. Let (G, τ) be a MAP topological group, and let J := (G, τK)
∧. The group

(G, τK) is g-barrelled iff (G∧, σ(G∧, G)) determines (J , σ(J , G)).

Proof. ClearlyG∧ ⊂ J ⊂ Hom(G,T) and (G∧, σ(G∧, G)) is a topological subgroup of (J , σ(J , G)).
Since G is MAP, G∧ is dense in Homp(G,T). Therefore G∧ is also dense in (J , σ(J , G)) and
their dual groups can be algebraically identified, which we simply write as an equality:

(G∧, σ(G∧, G))∧ = (J , σ(J , G))∧

⇒) Assume that (G, τK) is g-barrelled. We must prove that the compact-open topology
in (G∧, σ(G∧, G))∧ and in (J , σ(J , G))∧ coincide (the underlying set of both of them can be
identified to G).

To this end, fix K ⊂ J a σ(J , G)-compact subset. We must find a σ(G∧, G)-compact subset
L ⊂ G∧, such that L▷ ⊂ K▷. Since (G, τK) is g-barrelled, there exists a τK-zero neighborhood
V such that K ⊂ V ▶ (the black triangle symbol indicates that the polar is taken in J ). By the
definition of τK, V ⊃ L◁ for some L ⊂ G∧ which is σ(G∧, G)-compact. Thus K ⊂ L◁▶, and
taking polars on both sides we obtain: K▷ ⊃ (L◁▶)▷.

On the other hand L◁ ⊂ G is quasi-convex in τK, therefore L◁ = (L◁)▶◁ = (L◁▶)◁.

Implementing this in the above expression, we get:

K▷ ⊃ (L◁▶)▷ = (L◁)▶◁ = L◁

Finally the inverse polar L◁ can be identified with L▷, since (G∧, σ(G∧, G))∧ = G. Thus, we
can simply write K▷ ⊃ L▷, which proves that (G∧, σ(G∧, G)) determines (J , σ(J , G)).
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⇐) In order to prove that (G, τK) is g-barrelled, fix now a σ(J , G)-compact subset K of J .
By the assumption, there exists a σ(G∧, G)-compact L ⊂ G∧ such that K▷ ⊃ L▷. Here the
polars are taken in (J , σ(J , G))∧ and (G∧, σ(G∧, G))∧ respectively, but both dual groups are
identified, as said above. Taking inverse polars with respect to J we can write: K▷◁ ⊂ L▷◁,
Thus:

K ⊂ K▷◁ ⊂ L▷◁ ⊂ L◁▷

Since L◁ is a neighborhood of zero in τK, K is equicontinuous and therefore (G, τK) is g-
barrelled. □

Concerning the last theorem, it arises the question whether the claim “(G∧, σ(G∧, G)) deter-
mines (J , σ(J , G))” is always true. We expect a negative answer, thus we formulate the open
problem:

Question 2. Give an example of a topological group (G, τ) such that (G∧, σ(G∧, G)) does not
determine (J , σ(J , G)), where J = (G, τK)

∧.

Denote by B the class considered in [17] of all precompact Hausdorff abelian groups which
are the Bohr reflection of a locally compact group. Explicitly, (G,w) ∈ B if there exists a locally
compact group topology τ on G such that τ+ = w. We end this section with two results which
might complement the contents of [17]. The first one provides examples of groups which are
not in B. Loosely speaking, if a topological group (G, τ) gives rise to a duality which contains
a locally quasi-convex g-barrelled non locally compact topology, then (G, τ+) is not in B.

Proposition 4.10. Let (G, τ) be a topological group such that τK is compatible with τ . If
(G, τK) is not locally compact, then (G, τ+) /∈ B.

Proof. This is an easy consequence of the uniqueness of a g-barrelled locally quasi-convex
topology on G compatible with the duality (G,G∧). The topology τK already meets these
requirements. If G could be equipped with a locally compact topology µ, then (G,µ) would
be a g-barrelled, locally quasi-convex group. Therefore µ cannot be compatible with τ . Thus,
µ+ ̸= τ+ and (G, τ+) /∈ B. □

Proposition 4.11. The class B is not (countably) productive.

Proof. Take a family {(Gi, wi) ∈ B, i ∈ I}, whose members are non-compact and |I| ≥ ℵ0.
By the definition of B, for every i ∈ I there exists a locally compact topology τi in Gi such
that (Gi, τ

+
i ) = (Gi, wi). Observe that the product G :=

∏
(Gi, wi) is a precompact Hausdorff

group. Further, the product topology
∏

wi is the minimum of all the locally quasi-convex
topologies on G compatible with the duality (G,G∧).
Since the product of g-barrelled groups is also g-barrelled ([4, 3.4] ),

∏
τi is a g-barrelled locally

quasi-convex topology in the duality (G,G∧). Clearly (even if I is countable )
∏

τi is not locally
compact, and Proposition 4.10 applies. □

5. The family DG of compatible topologies on a discrete group G

Let G be a group, δ the discrete topology on G and DG the family of all group topologies
on G compatible with δ. All the elements in DG lie between δ+ and δ and have Hom(G,T) as
character group. Glicksberg Theorem applied to (G, δ) yields that any topology τ ∈ DG has
the same family of compact subsets as δ. Thus, the topologies in DG give rise to the same dual
group, algebraically and topologically. Namely: (G, τ)∧ = Homp(G,T), for all τ ∈ DG.

We characterize now the family DG in the class of MAP topological groups.

Proposition 5.1. Let (G, τ) be a MAP group. The following statements are equivalent:

(1) τ ∈ DG.
(2) (G, τ)∧ is a compact group and the τ -compact subsets of G are finite.
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(3) (G∧, σ(G∧, G)) is a compact group.

Proof. (1) ⇒ (2). As said in the preceding comments, the τ -compact subsets of G are finite
and (G, τ)∧ = Homp(G,T). Since Homp(G,T) carries the pointwise convergence topology, it
is a closed subgroup in the product TG. Therefore Homp(G,T) is a compact Hausdorff group.

(2) ⇒ (3). Clearly, if the τ -compact subsets are finite, the compact-open topology in G∧

coincides with the pointwise convergence topology, thus (G∧, σ(G∧, G)) = (G, τ)∧ is compact.

(3) ⇒ (1). By the assumption, (G∧, σ(G∧, G)) is a closed subgroup of the compact group
Homp(G,T). Assume by contradiction that G∧ ̸= Hom(G,T). Then, there exists a non-null
continuous character on Homp(G,T) which is null in G∧. Since the continuous characters on
Homp(G,T) are precisely the evaluations on points of G, there must exist a non null x ∈ G
such that ϕ(x) = 1 for all ϕ ∈ G∧. This contradicts the fact that (G, τ) is MAP. Therefore, it
must be G∧ = Hom(G,T) which proves (1). □

Corollary 5.2. On an abstract group G, the family DG does not contain any nondiscrete k-
group topology. In particular, every metrizable nondiscrete group has discontinuous characters.

Proof. Since all the topologies compatible with δ give rise to the same family of compact subsets,
there is at most one k-group topology in DG. On the other hand, δ is already a k-group topology
in DG. Thus the first claim is proved.
If µ is a metrizable nondiscrete group topology on G, it is a k-group topology. Therefore
µ /∈ DG, which means that (G,µ)∧ ̸= Hom(G,T). □

Corollary 5.3. Every nondiscrete Mackey group (or g-barrelled group) G admits non-continuous
characters.

Proof. Let (G,µ) be a Mackey group. Then (G,µ)∧ ̸= Hom(G,T), for otherwise µ would be
compatible with δ and by the assumption µ = δ. If (G,µ) is g-barrelled, the previous argument
can be applied to (G,Qµ), which by Remark 4.3 (i) is a Mackey group, and admits the same
character group as (G,µ). □

The property of “having finite compact subsets” is not sufficient to characterize the elements
of DG in the class of MAP topological groups. The next statement gives a related feature.

Proposition 5.4. Let (G, τ) be a topological group whose compact subsets are finite. Then,
(G, τ) is semireflexive.

Proof. By the assumption, the Pontryagin dual of (G, τ) is (G∧, σ(G∧, G)). Since the char-
acter group of (G∧, σ(G∧, G)) is algebraically isomorphic to G, we have that G∧∧ and G are
isomorphic as groups. □

The more restrictive assumption that the σ(G,G∧)-compact subsets of G are finite, yields
g-barrelledness, as specified next:

Proposition 5.5. Let (G, τ) be a topological group. The following statements are equivalent:

(1) The σ(G,G∧)-compact subsets of G are finite.
(2) The Pontryagin dual of (G, τ) coincides with (G∧, σ(G∧, G)) and it is g-barrelled.

Proof. (1) ⇒ (2). Since every τ -compact subset of G is σ(G,G∧)-compact, as in the proof of
5.4, we obtain that (G∧, σ(G∧, G)) is the Pontryagin dual of (G, τ). In order to prove that
X := (G∧, σ(G∧, G)) is g-barrelled, fix K ⊂ X∧ compact with respect to σ(X∧, X). Take
into account that X∧ and G are algebraically isomorphic and the topology σ(X∧, X) can be
identified with σ(G,G∧). Thus, K can be considered a σ(G,G∧)-compact subset of G. By (1)
K is finite and therefore equicontinuous.
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(2) ⇒ (1). Fix a σ(G,G∧)-compact subset L ⊂ G. By the above mentioned identifications,
L can be considered as a σ(X∧, X)-compact subset of X∧. Since X = (G∧, σ(G∧, G)) is
g-barrelled, L is equicontinuous with respect to σ(G∧, G), which is a precompact topology.
Therefore L is finite.

□

If τ ∈ DG, clearly τ satisfies (1) and (2) in Proposition 5.5. The converse does not hold as
the next example shows.

Example 5.6. A topological group G which is not in DG and the σ(G,G∧)-compact
subsets are finite.

Let L be a second category subgroup of T and consider T as the group of characters on
Z. If G := (Z, σ(Z,L)), clearly G is a precompact Hausdorff group such that G∧ = L. The
σ(G∧, G)-topology on L coincides wih the topology induced on L as a subspace of T. Thus, L
is separable and (G∧, σ(G∧, G)) is g-barrelled (by [7, 1.6]). Since G satisfies (2) in Proposition
5.5, the σ(Z,L)-compact subsets of Z are finite. Obviously, σ(Z,L) /∈ DG.

Observe that G is not reflexive: its dual group is L and the bidual G∧∧ is algebraically
isomorphic to Z, but the compact-open topology on G∧∧ is discrete. In fact, being L dense
in the metrizable compact group T, it has the same dual as T algebraically and topologically.
Since G is non-discrete, it is not topologically isomorphic to G∧∧.

The starting group G is not g-barrelled, because it is countable and nondiscrete. Its Pontrya-
gin dual (G∧, σ(G∧, G)) is g-barrelled, metrizable, noncompact, neither countably compact.
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