Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint assimilation of satellite soil moisture and streamflow data for the hydrological application of a two-dimensional shallow water model

Thumbnail
Ver/abrir
GarciaAlen_G_2023_JoH_621_129667.pdf (13.62Mb)
Use este enlace para citar
http://hdl.handle.net/2183/33760
Atribución-NoComercial-SinDerivadas 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
  • Investigación (ETSECCP) [826]
Metadatos
Mostrar o rexistro completo do ítem
Título
Joint assimilation of satellite soil moisture and streamflow data for the hydrological application of a two-dimensional shallow water model
Autor(es)
García-Alén, Gonzalo
Hostache, Renaud
Cea, Luis
Puertas, Jerónimo
Data
2023
Cita bibliográfica
García-Alén, G., Hostache, R., Cea, L., Puertas, J. (2023). Joint assimilation of satellite soil moisture and streamflow data for the hydrological application of a two-dimensional shallow water model. Journal of Hydrology, 621, 129667. https://doi.org/10.1016/j.jhydrol.2023.129667
Resumo
[Abstract:] Data assimilation (DA) in physically-based hydrodynamic models is conditioned by the difference in temporal and spatial scales of the observed data and the resolution of the model itself. In order to use remote sensing data in small-scale hydrodynamic modelling, it is necessary to explore innovative DA methods that can lead to a more plausible representation of the spatial variability of the parameters and processes involved. In the present study, satellite-derived soil moisture and in situ-observed streamflow data were jointly assimilated into a high-resolution hydrological-hydrodynamic model based on the Iber software, using the Tempered Particle Filter (TPF) for the dual estimation of model state variables and parameters. Twelve storm events occurring in a 199 km2 catchment located in NW Spain were used for testing the proposed approach. A 3-step procedure was followed: (1) sensitivity analysis of the model parameters; (2) joint assimilation of soil moisture and discharge data to estimate correlations between observations and model parameters; (3) joint assimilation of soil moisture and discharge data using an initial set of particles and parameter standard deviations derived from prior information. The numerical model correctly reproduces the observed data, with an average Nash-Sutcliffe efficiency (NSE) value of 0.74 over the 12 events when the prior information is used. The approach described is shown to be most efficient with storm events that produce isolated peak discharges.
Palabras chave
Hydrodynamic modelling
Iber+
Flood forecasting
Tempered particle filter
Shallow water equations
Data assimilation
 
Descrición
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión do editor
https://doi.org/10.1016/j.jhydrol.2023.129667
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións