Mostrar o rexistro simple do ítem
Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy
dc.contributor.author | Casteleiro-Roca, José-Luis | |
dc.contributor.author | Vivas, Francisco José | |
dc.contributor.author | Segura, Francisca | |
dc.contributor.author | Barragán, Antonio Javier | |
dc.contributor.author | Calvo-Rolle, José Luis | |
dc.contributor.author | Andújar-Márquez, José Manuel | |
dc.date.accessioned | 2021-01-27T10:49:08Z | |
dc.date.available | 2021-01-27T10:49:08Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Casteleiro-Roca, J.-L.; Vivas, F.J.; Segura, F.; Barragán, A.J.; Calvo-Rolle, J.L.; Andújar, J.M. Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy. Sustainability 2020, 12, 10566. https://doi.org/10.3390/su122410566 | es_ES |
dc.identifier.issn | 2071-1050 | |
dc.identifier.uri | http://hdl.handle.net/2183/27238 | |
dc.description.abstract | [Abstract] This work deals with the prediction of variables for a hydrogen energy storage system integrated into a microgrid. Due to the fact that this kind of system has a nonlinear behaviour, the use of traditional techniques is not accurate enough to generate good models of the system under study. Then, a hybrid intelligent system, based on clustering and regression techniques, has been developed and implemented to predict the power, the hydrogen level and the hydrogen system degradation. In this research, a hybrid intelligent model was created and validated over a dataset from a lab-size migrogrid. The achieved results show a better performance than other well-known classical regression methods, allowing us to predict the hydrogen consumption/generation with a mean absolute error of 0.63% with the test dataset respect to the maximum power of the system. | es_ES |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad; DPI2017-85540-R | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.uri | https://doi.org/10.3390/su122410566 | es_ES |
dc.rights | Creative Commons License Attribution 4.0 (CC BY 4.0) | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Clustering | es_ES |
dc.subject | Prediction | es_ES |
dc.subject | Regression | es_ES |
dc.subject | Hydrogen-based systems | es_ES |
dc.subject | Renewable sources-based microgrid | es_ES |
dc.subject | Hybrid model | es_ES |
dc.title | Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | Sustainability | es_ES |
UDC.volume | 12 | es_ES |
UDC.issue | 24 | es_ES |
UDC.startPage | 1 | es_ES |
UDC.endPage | 18 | es_ES |
dc.identifier.doi | https://doi.org/10.3390/su122410566 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Enxeñaría Industrial | es_ES |
UDC.grupoInv | Ciencia e Técnica Cibernética (CTC) | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (EPEF) [587]