Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy

Thumbnail
Ver/abrir
Casteleiro-Roca_2021_Hybrid_intelligent_modelling_in_renewable_energy_sources-based_microgrid.pdf (5.796Mb)
Use este enlace para citar
http://hdl.handle.net/2183/27238
Creative Commons License Attribution 4.0 (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Creative Commons License Attribution 4.0 (CC BY 4.0)
Coleccións
  • Investigación (EPEF) [591]
Metadatos
Mostrar o rexistro completo do ítem
Título
Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy
Autor(es)
Casteleiro-Roca, José-Luis
Vivas, Francisco José
Segura, Francisca
Barragán, Antonio Javier
Calvo-Rolle, José Luis
Andújar-Márquez, José Manuel
Data
2020
Cita bibliográfica
Casteleiro-Roca, J.-L.; Vivas, F.J.; Segura, F.; Barragán, A.J.; Calvo-Rolle, J.L.; Andújar, J.M. Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy. Sustainability 2020, 12, 10566. https://doi.org/10.3390/su122410566
Resumo
[Abstract] This work deals with the prediction of variables for a hydrogen energy storage system integrated into a microgrid. Due to the fact that this kind of system has a nonlinear behaviour, the use of traditional techniques is not accurate enough to generate good models of the system under study. Then, a hybrid intelligent system, based on clustering and regression techniques, has been developed and implemented to predict the power, the hydrogen level and the hydrogen system degradation. In this research, a hybrid intelligent model was created and validated over a dataset from a lab-size migrogrid. The achieved results show a better performance than other well-known classical regression methods, allowing us to predict the hydrogen consumption/generation with a mean absolute error of 0.63% with the test dataset respect to the maximum power of the system.
Palabras chave
Clustering
Prediction
Regression
Hydrogen-based systems
Renewable sources-based microgrid
Hybrid model
 
Versión do editor
https://doi.org/10.3390/su122410566
Dereitos
Creative Commons License Attribution 4.0 (CC BY 4.0)
ISSN
2071-1050

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións