Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy

Thumbnail
Ver/Abrir
Casteleiro-Roca_2021_Hybrid_intelligent_modelling_in_renewable_energy_sources-based_microgrid.pdf (5.796Mb)
Use este enlace para citar
http://hdl.handle.net/2183/27238
Creative Commons License Attribution 4.0 (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons License Attribution 4.0 (CC BY 4.0)
Colecciones
  • Investigación (EPEF) [591]
Metadatos
Mostrar el registro completo del ítem
Título
Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy
Autor(es)
Casteleiro-Roca, José-Luis
Vivas, Francisco José
Segura, Francisca
Barragán, Antonio Javier
Calvo-Rolle, José Luis
Andújar-Márquez, José Manuel
Fecha
2020
Cita bibliográfica
Casteleiro-Roca, J.-L.; Vivas, F.J.; Segura, F.; Barragán, A.J.; Calvo-Rolle, J.L.; Andújar, J.M. Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy. Sustainability 2020, 12, 10566. https://doi.org/10.3390/su122410566
Resumen
[Abstract] This work deals with the prediction of variables for a hydrogen energy storage system integrated into a microgrid. Due to the fact that this kind of system has a nonlinear behaviour, the use of traditional techniques is not accurate enough to generate good models of the system under study. Then, a hybrid intelligent system, based on clustering and regression techniques, has been developed and implemented to predict the power, the hydrogen level and the hydrogen system degradation. In this research, a hybrid intelligent model was created and validated over a dataset from a lab-size migrogrid. The achieved results show a better performance than other well-known classical regression methods, allowing us to predict the hydrogen consumption/generation with a mean absolute error of 0.63% with the test dataset respect to the maximum power of the system.
Palabras clave
Clustering
Prediction
Regression
Hydrogen-based systems
Renewable sources-based microgrid
Hybrid model
 
Versión del editor
https://doi.org/10.3390/su122410566
Derechos
Creative Commons License Attribution 4.0 (CC BY 4.0)
ISSN
2071-1050

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias