Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Laboratorio de Bases de Datos (LBD)
  • GI-LBD - Congresos, conferencias, etc.
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Laboratorio de Bases de Datos (LBD)
  • GI-LBD - Congresos, conferencias, etc.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication

Thumbnail
View/Open
Ladra_Susana_2018_Graph_Compression_for_Matrix_Multiplication.pdf (125.2Kb)
Use this link to cite
http://hdl.handle.net/2183/27090
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional
Collections
  • OpenAIRE [140]
  • GI-LBD - Congresos, conferencias, etc. [14]
Metadata
Show full item record
Title
Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication
Author(s)
Francisco, Alexandre P.
Gagie, Travis
Ladra, Susana
Navarro, Gonzalo
Date
2018-03
Citation
A. Francisco, T. Gagie, S. Ladra and G. Navarro, "Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication," 2018 Data Compression Conference, Snowbird, UT, USA, 2018, pp. 307-314, doi: 10.1109/DCC.2018.00039.
Abstract
[Abstract] Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper we show that some well-known Web and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. In particular, we show that the format of Boldi and Vigna allows computing the product in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original. We show that other successful graph compression formats enjoy this property as well.
Keywords
Graph compression
Adjacency-matrix multiplication
Compact data structures
Computation-friendly representation
 
Editor version
https://doi.org/10.1109/DCC.2018.00039
Rights
Atribución-NoComercial-SinDerivadas 4.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback