Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication

Use este enlace para citar
http://hdl.handle.net/2183/27090
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Coleccións
- Investigación (FIC) [1628]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix MultiplicationData
2018-03Cita bibliográfica
A. Francisco, T. Gagie, S. Ladra and G. Navarro, "Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication," 2018 Data Compression Conference, Snowbird, UT, USA, 2018, pp. 307-314, doi: 10.1109/DCC.2018.00039.
Resumo
[Abstract] Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper we show that some well-known Web and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. In particular, we show that the format of Boldi and Vigna allows computing the product in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original. We show that other successful graph compression formats enjoy this property as well.
Palabras chave
Graph compression
Adjacency-matrix multiplication
Compact data structures
Computation-friendly representation
Adjacency-matrix multiplication
Compact data structures
Computation-friendly representation
Versión do editor
Dereitos
Atribución-NoComercial-SinDerivadas 4.0 Internacional