Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autonomous Perceptual Categorization for Robotic Lifelong Learning in Dynamic Domains

Thumbnail
Ver/abrir
XoveTIC_2024_proceedings_Parte41.pdf (5.689Mb)
Use este enlace para citar
http://hdl.handle.net/2183/41089
Atribución 4.0
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0
Coleccións
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña) [66]
Metadatos
Mostrar o rexistro completo do ítem
Título
Autonomous Perceptual Categorization for Robotic Lifelong Learning in Dynamic Domains
Autor(es)
Martínez-Alonso, Sergio
Romero, Alejandro
Becerra Permuy, José Antonio
Duro, Richard J.
Data
2024
Resumo
Autonomously acquiring grounded information from on-line interaction in continuous and dynamic domains unknown at design time, to allow for abstraction and high-level reasoning, is still a challenging problem in robotics. In this work we propose an approach based on the generation of task-based dynamic perceptual equivalence classes that are constantly updated and adapted during the life of the robot, using three types of algorithms within the e-MDB cognitive architecture. Results are presented for a robot interacting with different domains, demonstrating the adaptability of the approach through experiments with arbitrary domain changes. The performance of the three implemented algorithms is compared, and the possible uses of this approach within cognitive architectures are discussed.
Palabras chave
e-MDB cognitive architecture
Robot
 
Versión do editor
https://doi.org/10.17979/spudc.9788497498913.41
Dereitos
Atribución 4.0

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións