Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated Approach for Accurate CPU Power Modelling

Thumbnail
Ver/abrir
Tourino_Juan_2024_Automated_Approach_for_Accurate_CPU_Power_Modelling.pdf - Versión aceptada (932.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/40217
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
Automated Approach for Accurate CPU Power Modelling
Autor(es)
Maseda, Tomé
Enes, Jonatan
Expósito, Roberto R.
Touriño, Juan
Data
2024
Cita bibliográfica
T. Maseda, J. Enes, R. R. Expósito and J. Touriño, "Automated Approach for Accurate CPU Power Modelling," 2024 IEEE International Conference on Cluster Computing (CLUSTER), Kobe, Japan, 2024, pp. 97-107, doi: 10.1109/CLUSTER59578.2024.00016.
Resumo
[Abstract]: Power supply is a limiting factor when increasing the computing capacity of supercomputers. As a consequence, power consumption has become one of the biggest challenges in the field of High Performance Computing (HPC). In order to develop energy-efficient tools (e.g., frameworks, applications), it is essential to have an accurate power consumption modelling. Al-though previous works proposed a wide variety of approaches to model CPU power consumption, building models in an automated and adaptable way to changing scenarios and predicting power with high precision remains complex due to multiple factors (e.g., training and test workloads, model variables). In this paper, we present a set of tools to fully automate the process of modelling power consumption using CPU time series data. More specifically, our proposal includes two tools: (1) CPUPowerWatcher, which gathers CPU metrics during the execution of user-configurable workloads; and (2) CPUPowerSeer, which builds models to predict CPU power consumption (e.g., polynomial regression) from different CPU variables (e.g., usage, clock frequency) using time series data. Thus, multiple models can be created and evaluated easily, allowing the selection of an optimal model for a specific workload. The experiments conducted by combining these tools allow analysing the impact of novel factors on CPU power consumption, such as the type of CPU usage generated by different workloads or how the CPU cores are allocated to them. In addition, the accuracy of six regression models is compared when predicting CPU- and I/O-intensive workloads using two different core allocations.
Palabras chave
Adaptation models
Power demand
Accuracy
Limiting
Computational modeling
Time series analysis
Buildings
Predictive models
Data models
Polynomials
CPU power modelling
Time series
Energy consumption
 
Descrición
Presented at: 2024 IEEE International Conference on Cluster Computing (CLUSTER), Kobe, Japan, 24-27 September 2024
 
This version of the paper has been accepted for publication. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published paper is available online at: https://doi.org/10.1109/CLUSTER59578.2024.00016
 
Versión do editor
https://doi.org/10.1109/CLUSTER59578.2024.00016
Dereitos
© 2024 IEEE.

Ítems relacionados

Mostrando ítems relacionados por Título, autor ou materia.

  • Residential Location Econometric Choice Modeling With Irregular Zoning: Common Border Spatial Correlation Metric 

    Pérez-López, José-Benito; Novales, Margarita; Varela-García, Francisco-Alberto; Orro, Alfonso (Springer Nature, 2020)
    [Abstract] Residential location choice (RLC) predicts where and how people choose their residential location in the framework of land use–transport interaction models (LUTI). This paper seeks an efficient RLC model in the ...
  • Global and local sensitivity analysis to improve the understanding of physically-based urban wash-off models from high-resolution laboratory experiments 

    Naves, Juan; Rieckermann, Jörg; Cea, Luis; Puertas, Jerónimo; Anta, Jose (Elsevier, 2019)
    [Abstract:] Physically-based urban wash-off models are a promising means of studying the transport of finer suspended solids and their associated pollutants during rain events, considering spatial and temporal heterogeneities. ...
  • Líneas y resultados de investigación en torno a la dimensión instrumental de la modelización en la enseñanza de las ciencias 

    Oliva, José Mª (Universidade da Coruña, Servizo de Publicacións, 2021-11-16)
    [Resumen] Modelo y modelización son términos empleados habitualmente con distintas acepciones en la enseñanza de las ciencias. En este artículo se analiza la dimensión instrumental de la modelización, identificándose ...

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións