Show simple item record

dc.contributor.authorMaseda, Tomé
dc.contributor.authorEnes, Jonatan
dc.contributor.authorExpósito, Roberto R.
dc.contributor.authorTouriño, Juan
dc.date.accessioned2024-11-21T10:02:18Z
dc.date.available2024-11-21T10:02:18Z
dc.date.issued2024
dc.identifier.citationT. Maseda, J. Enes, R. R. Expósito and J. Touriño, "Automated Approach for Accurate CPU Power Modelling," 2024 IEEE International Conference on Cluster Computing (CLUSTER), Kobe, Japan, 2024, pp. 97-107, doi: 10.1109/CLUSTER59578.2024.00016.es_ES
dc.identifier.urihttp://hdl.handle.net/2183/40217
dc.descriptionPresented at: 2024 IEEE International Conference on Cluster Computing (CLUSTER), Kobe, Japan, 24-27 September 2024es_ES
dc.descriptionThis version of the paper has been accepted for publication. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published paper is available online at: https://doi.org/10.1109/CLUSTER59578.2024.00016es_ES
dc.description.abstract[Abstract]: Power supply is a limiting factor when increasing the computing capacity of supercomputers. As a consequence, power consumption has become one of the biggest challenges in the field of High Performance Computing (HPC). In order to develop energy-efficient tools (e.g., frameworks, applications), it is essential to have an accurate power consumption modelling. Al-though previous works proposed a wide variety of approaches to model CPU power consumption, building models in an automated and adaptable way to changing scenarios and predicting power with high precision remains complex due to multiple factors (e.g., training and test workloads, model variables). In this paper, we present a set of tools to fully automate the process of modelling power consumption using CPU time series data. More specifically, our proposal includes two tools: (1) CPUPowerWatcher, which gathers CPU metrics during the execution of user-configurable workloads; and (2) CPUPowerSeer, which builds models to predict CPU power consumption (e.g., polynomial regression) from different CPU variables (e.g., usage, clock frequency) using time series data. Thus, multiple models can be created and evaluated easily, allowing the selection of an optimal model for a specific workload. The experiments conducted by combining these tools allow analysing the impact of novel factors on CPU power consumption, such as the type of CPU usage generated by different workloads or how the CPU cores are allocated to them. In addition, the accuracy of six regression models is compared when predicting CPU- and I/O-intensive workloads using two different core allocations.es_ES
dc.description.sponsorshipThis work was supported by grant PID2022-13643SNB-100, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, EU. CITIC, as a centre accredited for excellence within the Galician University Sys-tem and a member of the CIGUS Network, receives subsidies from the Department of Education, Science, Universities, and Vocational Training of the Xunta de Galicia. Additionally, it is co-financed by the EU through the FEDER Galicia 2021–27 operational program (ref. ED431G 2023/01). This work was also funded by Xunta de Galicia through a predoctoral fellowship (ref. ED481A-2023-035).es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2023/01es_ES
dc.description.sponsorshipXunta de Galicia; ED481A-2023-035es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.urihttps://doi.org/10.1109/CLUSTER59578.2024.00016es_ES
dc.rights© 2024 IEEE.es_ES
dc.subjectAdaptation modelses_ES
dc.subjectPower demandes_ES
dc.subjectAccuracyes_ES
dc.subjectLimitinges_ES
dc.subjectComputational modelinges_ES
dc.subjectTime series analysises_ES
dc.subjectBuildingses_ES
dc.subjectPredictive modelses_ES
dc.subjectData modelses_ES
dc.subjectPolynomialses_ES
dc.subjectCPU power modellinges_ES
dc.subjectTime serieses_ES
dc.subjectEnergy consumptiones_ES
dc.titleAutomated Approach for Accurate CPU Power Modellinges_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
UDC.startPage97es_ES
UDC.endPage107es_ES
dc.identifier.doi10.1109/CLUSTER59578.2024.00016
UDC.conferenceTitleCLUSTER 2024es_ES
UDC.coleccionInvestigaciónes_ES
UDC.departamentoEnxeñaría de Computadoreses_ES
UDC.grupoInvGrupo de Arquitectura de Computadores (GAC)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136435NB-I00/ES/ARQUITECTURAS, FRAMEWORKS Y APLICACIONES DE LA COMPUTACION DE ALTAS PRESTACIONESes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record