Mostrar o rexistro simple do ítem

dc.contributor.authorLugrís-Armesto, Urbano
dc.contributor.authorPérez Soto, Manuel
dc.contributor.authorMichaud, Florian
dc.contributor.authorCuadrado, Javier
dc.date.accessioned2024-07-29T08:57:59Z
dc.date.available2024-07-29T08:57:59Z
dc.date.issued2023-10-06
dc.identifier.citationLugrís, U., Pérez-Soto, M., Michaud, F. et al. Human motion capture, reconstruction, and musculoskeletal analysis in real time. Multibody Syst Dyn 60, 3–25 (2024). https://doi.org/10.1007/s11044-023-09938-0es_ES
dc.identifier.issn1384-5640
dc.identifier.issn1573-272X
dc.identifier.urihttp://hdl.handle.net/2183/38284
dc.description.abstract[Abstract] Optical motion capture is an essential tool for the study and analysis of human movement. Currently, most manufacturers of motion-capture systems provide software applications for reconstructing the movement in real time, thus allowing for on-the-fly visualization. The captured kinematics can be later used as input data for a further musculoskeletal analysis. However, in advanced biofeedback applications, the results of said analysis, such as joint torques, ground-reaction forces, muscle efforts, and joint-reaction forces, are also required in real time. In this work, an extended Kalman filter (EKF) previously developed by the authors for real-time, whole-body motion capture and reconstruction is augmented with inverse dynamics and muscle-efforts optimization, enabling the calculation and visualization of the latter, along with joint-reaction forces, while capturing the motion. A modified version of the existing motion-capture algorithm provides the positions, velocities, and accelerations at every time step. Then, the joint torques are calculated by solving the inverse-dynamics problem, using force-plate measurements along with previously estimated body-segment parameters. Once the joint torques are obtained, an optimization problem is solved, in order to obtain the muscle forces that provide said torques while minimizing an objective function. This is achieved by a very efficient quadratic programming algorithm, thoroughly tuned for this specific problem. With this procedure, it is possible to capture and label the optical markers, reconstruct the motion of the model, solve the inverse dynamics, and estimate the individual muscle forces, all while providing real-time visualization of the results.es_ES
dc.description.sponsorshipinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095145-B-I00/ES/ESTUDIO DE LA RELACION ENTRE EFICIENCIA Y NIVEL DE DETALLE EN MODELOS BIOMECANICOS DEL CUERPO HUMANOes_ES
dc.description.sponsorshipMoreover, F.M. would like to acknowledge the support of the Galician Government and the Ferrol Industrial Campus by means of the postdoctoral research contract 2022/CP/048es_ES
dc.description.sponsorshipXunta de Galicia; 2022/CP/048es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.urihttps://doi.org/10.1007/s11044-023-09938-0es_ES
dc.rightsCreative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.subjectBiomechanicses_ES
dc.subjectMotion capturees_ES
dc.subjectMusculoskeletal analysises_ES
dc.subjectBiofeedbackes_ES
dc.subjectKalman filteres_ES
dc.titleHuman motion capture, reconstruction, and musculoskeletal analysis in real timees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleMultibody System Dynamicses_ES
UDC.volume60es_ES
UDC.startPage3es_ES
UDC.endPage25es_ES
dc.identifier.doihttps://doi.org/10.1007/s11044-023-09938-0


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem