Mostrar o rexistro simple do ítem

dc.contributor.authorWetzl, Cecilia
dc.contributor.authorBrosel, Sergi
dc.contributor.authorCarini, Marco
dc.contributor.authorDi Silvio, Desiré
dc.contributor.authorIlla, Xavi
dc.contributor.authorVilla, Rosa
dc.contributor.authorGuimerà, Anton
dc.contributor.authorPrats Alfonso, Elisabet
dc.contributor.authorPrato, Maurizio
dc.contributor.authorCriado, Alejandro
dc.contributor.editorRoyal Society of Chemistry
dc.date.accessioned2024-06-21T16:06:46Z
dc.date.available2024-06-21T16:06:46Z
dc.date.issued2023-09-19
dc.identifier.citationC. Wetzl, S. Brosel-Oliu, M. Carini, D. Di Silvio, X. Illa, R. Villa, A. Guimera, E. Prats-Alfonso, M. Prato and A. Criado, Nanoscale, 2023, DOI: 10.1039/d3nr04153kes_ES
dc.identifier.issn2040-3372
dc.identifier.urihttp://hdl.handle.net/2183/37305
dc.description.abstract[Abastract]: In the last decade, solution-gated graphene field effect transistors (GFETs) showed their versatility in the development of a miniaturized multiplexed platform for electrophysiological recordings and sensing. Due to their working mechanism, the surface functionalisation and immobilisation of receptors are pivotal to ensure the proper functioning of devices. Herein, we present a controlled covalent functionalisation strategy based on molecular design and electrochemical triggering, which provide a monolayer-like functionalisation of micro-GFET arrays retaining the electronic properties of graphenes. The functionalisation layer as a receptor was then employed as the linker for serotonin aptamer conjugation. The micro-GFET arrays display sensitivity toward the target analyte in the micromolar range in a physiological buffer (PBS 10 mM). The sensor allows the in-flow real-time monitoring of serotonin transient concentrations with fast and reversible responses.es_ES
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 881603 (GrapheneCore3) and no. 785219 (GrapheneCore2). M. P. is AXA Professor and is supported by the European Research Council (ERC-AdG-2019, no. 885323), the Agencia Estatal de Investigación-AEI (“Proyectos I+D+i 2019-Modalidad Retos Investigación”, no. PID2019-108523RB-I00), by grant PRE2020-095099 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future.” Part of this work has made use of the Spanish ICTS Network MICRONANOFABS, partially supported by MICINN and the ICTS NANBIOSIS, more specifically by the Micro-NanoTechnology Unit U8 of the CIBER-BBN. This project was also funded by the Generalitat de Catalunya (2021SGR00495), by the Spanish Ministerio de Ciencia e Innovación (PID2021-126117NA-I00), by “ERDF A way of making Europe”, and by CIBER-BBN (CB06/01/0049). X. I., R. V., A. G. and E. P.-A. thank the financial support provided by CIBER-BBN and the Instituto de Salud Carlos III with assistance from the European Regional Development. A. C. acknowledges financial support by Grant ED431H 2020/17 funded by Xunta de Galicia, and by Grant RYC2020-030183-I funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”.es_ES
dc.description.sponsorshipGeneralitat de Catalunya; 2021SGR00495es_ES
dc.description.sponsorshipXunta de Galicia; ED431H 2020/17es_ES
dc.language.isoenges_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/785219es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/881603es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/85323es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108523RB-I00/ES/NANODOTS DE CARBONO A MEDIDA COMO NUEVOS MATERIALES MULTIFUNCIONALES SEGUROS PARA APLICACIONES NANO- Y BIO-TECNOLOGICASes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/ES/PRE2020-095099es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126117NA-I00/ES/ INTERFASES MULTIMODALES BASADAS EN GRAFENO PARA REGISTRAR LA ACTIVIDAD CEREBRALes_ES
dc.relationinfo:eu-repo/grantAgreement/MSC/Programa Nacional de Recursos y Tecnologías Agroalimentarias/CB06%2F01%2F0049/ES/Desarrollo e implementación de nuevas tecnologías en biomedicina 49es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-024454-I/ES/es_ES
dc.relation.urihttps://doi.org/10.1039/D3NR04153Kes_ES
dc.rightsThis journal is © The Royal Society of Chemistry 2023. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence http://creativecommons.org/licenses/by/3.0/es_ES
dc.subjectNanoscalees_ES
dc.subjectChemistryes_ES
dc.subjectGrowthes_ES
dc.subjectFilmses_ES
dc.subjectGraphitees_ES
dc.subjectSerotonines_ES
dc.subjectBiosensing techniqueses_ES
dc.subjectTransistorses_ES
dc.subjectAptamerses_ES
dc.titleCovalent functionalisation controlled by molecular design for the aptameric recognition of serotonin in graphene-based field-effect transistorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleNanoscalees_ES
UDC.issue15es_ES
UDC.startPage16650es_ES
UDC.endPage16657es_ES
dc.identifier.doi10.1039/D3NR04153K


Ficheiros no ítem

Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem