dc.contributor.author | Anderson, Mark | |
dc.contributor.author | Vilares, David | |
dc.contributor.author | Gómez-Rodríguez, Carlos | |
dc.date.accessioned | 2024-05-28T09:07:16Z | |
dc.date.available | 2024-05-28T09:07:16Z | |
dc.date.issued | 2019-08 | |
dc.identifier.citation | Mark Anderson, David Vilares, and Carlos Gómez-Rodríguez. 2019. Artificially Evolved Chunks for Morphosyntactic Analysis. In Proceedings of the 18th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2019), pages 133–143, Paris, France. Association for Computational Linguistics. | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/36665 | |
dc.description | It was held on the last week of August (Aug 26-30), in the center of Paris, in the "Grand amphitheatre du Monde anglophone" of the Sorbonne Nouvelle. | es_ES |
dc.description.abstract | [Absctract]: We introduce a language-agnostic evolutionary technique for automatically extracting chunks
from dependency treebanks. We evaluate these chunks on a number of morphosyntactic tasks,
namely POS tagging, morphological feature tagging, and dependency parsing. We test the utility
of these chunks in a host of different ways. We first learn chunking as one task in a shared multitask framework together with POS and morphological feature tagging. The predictions from this
network are then used as input to augment sequence-labelling dependency parsing. Finally, we
investigate the impact chunks have on dependency parsing in a multi-task framework. Our results
from these analyses show that these chunks improve performance at different levels of syntactic
abstraction on English UD treebanks and a small, diverse subset of non-English UD treebanks. | es_ES |
dc.description.sponsorship | This work has received funding from the European Research Council (ERC), under the European Unions
Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150), from
the ANSWER-ASAP project (TIN2017-85160-C2-1-R) from MINECO, and from Xunta de Galicia
(ED431B 2017/01). We thank one anonymous reviewer for in-depth comments and suggestions. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431B 2017/01 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Association for Computational Linguistics | es_ES |
dc.relation.uri | https://aclanthology.org/W19-7815/ | es_ES |
dc.rights | Atribución 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Morphosyntactic Analysis | es_ES |
dc.subject | Evolutionary Algorithms | es_ES |
dc.subject | Dependency Parsing | es_ES |
dc.subject | Multi-task Learning | es_ES |
dc.title | Artificially Evolved Chunks for Morphosyntactic Analysis | es_ES |
dc.type | conference output | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Proceedings of the 18th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2019) | es_ES |
UDC.startPage | 133 | es_ES |
UDC.endPage | 143 | es_ES |
UDC.conferenceTitle | 18th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2019) | es_ES |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Letras | es_ES |
UDC.grupoInv | Lingua e Sociedade da Información (LYS) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/714150 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-1-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO | es_ES |