Mostrar o rexistro simple do ítem
Pure Lagrangian and Semi-Lagrangian Finite Element Methods for the Numerical Solution of Convection-Diffusion Problems
dc.contributor.author | Benítez, Marta | |
dc.contributor.author | Bermúdez, Alfredo | |
dc.date.accessioned | 2024-02-06T17:19:06Z | |
dc.date.available | 2024-02-06T17:19:06Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | M. Benitez & A. Bermudez. (2014). Pure Lagrangian and Semi-Lagrangian Finite Element Methods for the Numerical Solution of Convection-Diffusion Problems. International Journal of Numerical Analysis and Modeling. 11 (2). 271-287. | es_ES |
dc.identifier.issn | 1705-5105 | |
dc.identifier.issn | 2617-8710 (e-ISSN) | |
dc.identifier.uri | http://hdl.handle.net/2183/35447 | |
dc.description | Accepted version. | es_ES |
dc.description.abstract | [Abstract]: In this paper we propose a unified formulation to introduce and analyze (pure) Lagrangian and semi-Lagrangian methods for solving convection-diffusion partial differential equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. One of the pure Lagrangian methods we introduce has been analyzed in [4] and [5] where stability and error estimates for time semi-discretized and fully-discretized schemes have been proved. In this paper, we prove new stability estimates. More precisely, we obtain an l∞(H1) stability estimate independent of the diffusion coefficient and, if the underlying flow is incompressible, we get a stability inequality independent of the final time. Finally, the numerical solution of a test problem is presented that confirms the new stability results. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Ministry of Science and Innovation under research project MTM2008-02483 and by Xunta de Galicia under research projects INCITE 09207047 PR and 2010/22. Xunta de Galicia; INCITE 09207047 PR Xunta de Galicia; 2010/22 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | University of Alberta, Northwestern Polytechnical University, Institute for Scientific Computing | es_ES |
dc.relation.uri | http://www.math.ualberta.ca/ijnam/Volume-11-2014/No-2-14/2014-02-02.pdf | es_ES |
dc.rights | Version of record: © 2013 Institute for Scientific Computing and Information Accepted version: "Self-archiving involves an embargo period of 12 months. This includes posting the accepted author manuscript on your personal website, private research groups and institutional repositories." https://www.global-sci.org/intro/page/show.html?id=15 | es_ES |
dc.subject | Convection-diffusion equation | es_ES |
dc.subject | Pure Lagrangian method | es_ES |
dc.subject | Semi-Lagrangian method | es_ES |
dc.subject | Lagrange-Galerkin methods | es_ES |
dc.subject | Characteristics method | es_ES |
dc.subject | Second order schemes | es_ES |
dc.subject | Finite element method | es_ES |
dc.title | Pure Lagrangian and Semi-Lagrangian Finite Element Methods for the Numerical Solution of Convection-Diffusion Problems | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | International Journal of Numerical Analysis and Modeling | es_ES |
UDC.volume | 11 | es_ES |
UDC.issue | 2 | es_ES |
UDC.startPage | 271 | es_ES |
UDC.endPage | 287 | es_ES |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Matemáticas | es_ES |
UDC.grupoInv | Modelos e Métodos Numéricos en Enxeñaría e Ciencias Aplicadas (M2NICA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN/Plan Nacional de I+D+i 2008-2011/MTM2008-02483/ES/ANALISIS Y SIMULACION NUMERICA DE MODELOS MATEMATICOS CON APLICACIONES INDUSTRIALES | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1685]