Pure Lagrangian and Semi-Lagrangian Finite Element Methods for the Numerical Solution of Convection-Diffusion Problems
Use este enlace para citar
http://hdl.handle.net/2183/35447Coleccións
- Investigación (FIC) [1615]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Pure Lagrangian and Semi-Lagrangian Finite Element Methods for the Numerical Solution of Convection-Diffusion ProblemsData
2014Cita bibliográfica
M. Benitez & A. Bermudez. (2014). Pure Lagrangian and Semi-Lagrangian Finite Element Methods for the Numerical Solution of Convection-Diffusion Problems. International Journal of Numerical Analysis and Modeling. 11 (2). 271-287.
Resumo
[Abstract]: In this paper we propose a unified formulation to introduce and analyze (pure) Lagrangian and semi-Lagrangian methods for solving convection-diffusion partial differential equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. One of the pure Lagrangian methods we introduce has been analyzed in [4] and [5] where stability and error estimates for time semi-discretized and fully-discretized schemes have been proved. In this paper, we prove new stability estimates. More precisely, we obtain an l∞(H1) stability estimate independent of the diffusion coefficient and, if the underlying flow is incompressible, we get a stability inequality independent of the final time. Finally, the numerical solution of a test problem is presented that confirms the new stability results.
Palabras chave
Convection-diffusion equation
Pure Lagrangian method
Semi-Lagrangian method
Lagrange-Galergin method
Characteristics method
Second order schemes
Finite element method
Pure Lagrangian method
Semi-Lagrangian method
Lagrange-Galergin method
Characteristics method
Second order schemes
Finite element method
Descrición
Accepted version.
Versión do editor
Dereitos
Version of record: © 2013 Institute for Scientific Computing and Information
Accepted version: "Self-archiving involves an embargo period of 12 months. This includes posting the accepted author manuscript on your personal website, private research groups and institutional repositories."
https://www.global-sci.org/intro/page/show.html?id=15
ISSN
1705-5105
2617-8710 (e-ISSN)
2617-8710 (e-ISSN)
Ítems relacionados
Mostrando ítems relacionados por Título, autor ou materia.
-
MLS-SPH-ALE: A Review of Meshless-FV Methods and a Unifying Formulation for Particle Discretizations
Eirís, Antonio; Ramírez, Luis; Couceiro, Iván; Fernández-Fidalgo, Javier; París, José; Nogueira, Xesús (Springer, 2023)[Abstract:] Mesh-based and particle methods were conceived as two different discretization strategies to solve partial differential equations. In the last two decades computational methods have diversified and a myriad of ... -
Why do computer methods for grounding analysis produce anomalous results?
Navarrina, Fermín; Colominas, Ignasi; Casteleiro, Manuel (IEEE Power Engineering Society, 2003)[Abstract] Grounding systems are designed to guarantee personal security, protection of equipments and continuity of power supply. Hence, engineers must compute the equivalent resistance of the system and the potential ... -
¿Son fiables los métodos convencionales para el cálculo de redes de puesta a tierra?
Navarrina, Fermín; Colominas, Ignasi; Casteleiro, Manuel (2004)[Resumen] Para diseñar una toma de tierra es preciso calcular su resistencia equivalente y la distribución de potencial en la superficie del terreno durante una derivación de corriente [1, 2, 3]. Para elllo las normas sólo ...