Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A time-varying Kalman filter for low-acceleration attitude estimation

Thumbnail
View/Open
Deibe_Diaz_Alvaro_2023_Time-varying_Kalman_filter_low-acceleration_attitude_estimation.pdf (968.4Kb)
Use this link to cite
http://hdl.handle.net/2183/35071
https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
A time-varying Kalman filter for low-acceleration attitude estimation
Author(s)
Deibe Díaz, Álvaro
Antón Nacimiento, José Augusto
Cardenal, Jesús
López Peña, Fernando
Date
2023-03-15
Citation
Á. Deibe Díaz, J.A. Antón Nacimiento, J. Cardenal, F.L. Peña, A time-varying Kalman filter for low-acceleration attitude estimation, Measurement 213 (2023) 112729. https://doi.org/10.1016/j.measurement.2023.112729.
Abstract
[Abstract]: This work shows an attitude estimator (AE) based on a time-varying Kalman filter (TVKF) and adapted to those cases where a low-acceleration assumption can be applied. This filter is an extended version of a previously published time-varying Kalman filter attitude estimator (TVKAE). A comparative analysis of the accuracies of those two estimators is provided. The efficiencies of both filters are also compared with those of other published AEs. The results show that the new AE achieves the best overall performance, followed by the original one.
Keywords
Attitude estimation
AHRS
IMU
Kalman filter
Quaternions
 
Description
CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/
Editor version
https://doi.org/10.1016/j.measurement.2023.112729
ISSN
1873-412X

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback