Mostrar o rexistro simple do ítem

dc.contributor.authorMagot, Florent
dc.contributor.authorSoen, Gwendoline van
dc.contributor.authorBuedenbender, Larissa
dc.contributor.authorLi, Fengjie
dc.contributor.authorSoltwedel, Thomas
dc.contributor.authorGrauso, Laura
dc.contributor.authorMangoni, Alfonso
dc.contributor.authorBlümel, Martina
dc.contributor.authorTasdemir, Deniz
dc.date.accessioned2023-05-11T16:03:28Z
dc.date.available2023-05-11T16:03:28Z
dc.date.issued2023-01-28
dc.identifier.citationMagot, F.; Van Soen, G.; Buedenbender, L.; Li, F.; Soltwedel, T.; Grauso, L.; Mangoni, A.; Blümel, M.; Tasdemir, D. Bioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62. Mar. Drugs 2023, 21, 95. https://doi.org/10.3390/md21020095es_ES
dc.identifier.issn1660-3397
dc.identifier.urihttp://hdl.handle.net/2183/33068
dc.descriptionThis article belongs to the Special Issue Marine Metabolomics 2023es_ES
dc.description.abstract[Abstract] Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (−)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.es_ES
dc.description.sponsorshipThis research has been partly funded by the EU H2020-MSCA-ITN-ETN project MarPipe—Improving the flow in the pipeline of the next generation of marine biodiscovery scientists, Grant No.: GA721421. This research has been supported by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (grant no. AWI_PS108_00)es_ES
dc.description.sponsorshipAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Bremerhaven, Alemania); AWI_PS108_00es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/721421es_ES
dc.relation.urihttps://doi.org/10.3390/md21020095es_ES
dc.rightsAtribución 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArctices_ES
dc.subjectDeep-sea sedimentes_ES
dc.subjectAspergilluses_ES
dc.subjectOSMACes_ES
dc.subjectAntimicrobial activityes_ES
dc.subjectCandida albicanses_ES
dc.subjectUntargeted metabolomicses_ES
dc.subjectMolecular networkinges_ES
dc.subjectGNPSes_ES
dc.subjectHybrid PKS-NRPS macrolactonees_ES
dc.titleBioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleMarine Drugses_ES
UDC.volume21 (2023)es_ES
UDC.issue2es_ES
UDC.startPage95es_ES
dc.identifier.doi10.3390/md21020095


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem