Mostrar o rexistro simple do ítem

dc.contributor.authorIglesias Morís, Daniel
dc.contributor.authorHervella, Álvaro S.
dc.contributor.authorRouco, J.
dc.contributor.authorNovo Buján, Jorge
dc.contributor.authorOrtega Hortas, Marcos
dc.date.accessioned2023-03-30T17:00:24Z
dc.date.available2023-03-30T17:00:24Z
dc.date.issued2023-01
dc.identifier.citationD. I. Morís, Á. S. Hervella, J. Rouco, J. Novo, y M. Ortega, «Context encoder transfer learning approaches for retinal image analysis», Computers in Biology and Medicine, vol. 152, 2023, doi: 10.1016/j.compbiomed.2022.106451.es_ES
dc.identifier.issn0010-4825
dc.identifier.urihttp://hdl.handle.net/2183/32815
dc.descriptionFinanciado para publicación en acceso aberto: Universidade da Coruña/CISUG.es_ES
dc.description.abstract[Abstract]: During the last years, deep learning techniques have emerged as powerful alternatives to solve biomedical image analysis problems. However, the training of deep neural networks usually needs great amounts of labeled data to be done effectively. This is even more critical in the case of biomedical imaging due to the added difficulty of obtaining data labeled by experienced clinicians. To mitigate the impact of data scarcity, one of the most commonly used strategies is transfer learning. Nevertheless, the success of this approach depends on the effectiveness of the available pre-training techniques for learning from little or no labeled data. In this work, we explore the application of the Context Encoder paradigm for transfer learning in the domain of retinal image analysis. To this aim, we propose several approaches that allow to work with full resolution images and improve the recognition of the retinal structures. In order to validate the proposals, the Context Encoder pre-trained models are fine-tuned to perform two relevant tasks in the domain: vessels segmentation and fovea localization. The experiments performed on different public datasets demonstrate that the proposed Context Encoder approaches allow mitigating the impact of data scarcity, being superior to previous alternatives in this domain.es_ES
dc.description.sponsorshipXunta de Galicia; ED481A 2021/196es_ES
dc.description.sponsorshipXunta de Galicia; ED481B-2022-025es_ES
dc.description.sponsorshipXunta de Galicia; ED431C 2020/24es_ES
dc.description.sponsorshipXunta de Galicia; IN845D 2020/38es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.description.sponsorshipThis research was funded by Instituto de Salud Carlos III, Gov- ernment of Spain, DTS18/00136 research project; Ministerio de Cien- cia e Innovación y Universidades, Government of Spain, RTI2018- 095894-B-I00 research project; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Univer- sidade, Xunta de Galicia, Spain through the predoctoral grant contract ref. ED481A 2021/196 and postdoctoral grant contract ref. ED481B- 2022-025; and Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; Axencia Galega de Innovación (GAIN), Spain, Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia, Spain ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, Spain, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). Funding for open access charge: Universidade da Coruña/CISUG.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICAes_ES
dc.relationinfo:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DTS18%2F00136/ES/PLATAFORMA ONLINE PARA PREVENCION Y DETECCION PRECOZ DE ENFERMEDAD VASCULAR MEDIANTE ANALISIS AUTOMATIZADO DE INFORMACION E IMAGEN CLINICAes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACION Y CARACTERIZACION COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLOGICA: ESTUDIOS EN ESCLEROSIS MULTIPLEes_ES
dc.relation.urihttps://doi.org/10.1016/j.compbiomed.2022.106451es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBiomedical imaginges_ES
dc.subjectContext Encoderes_ES
dc.subjectDeep learninges_ES
dc.subjectEye funduses_ES
dc.subjectSelf-supervised learninges_ES
dc.subjectTransfer learninges_ES
dc.titleContext encoder transfer learning approaches for retinal image analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleComputers in Biology and Medicinees_ES
UDC.volume152es_ES
UDC.issueJanuaryes_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem