Mostrar o rexistro simple do ítem
Context encoder transfer learning approaches for retinal image analysis
dc.contributor.author | Iglesias Morís, Daniel | |
dc.contributor.author | Hervella, Álvaro S. | |
dc.contributor.author | Rouco, J. | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2023-03-30T17:00:24Z | |
dc.date.available | 2023-03-30T17:00:24Z | |
dc.date.issued | 2023-01 | |
dc.identifier.citation | D. I. Morís, Á. S. Hervella, J. Rouco, J. Novo, y M. Ortega, «Context encoder transfer learning approaches for retinal image analysis», Computers in Biology and Medicine, vol. 152, 2023, doi: 10.1016/j.compbiomed.2022.106451. | es_ES |
dc.identifier.issn | 0010-4825 | |
dc.identifier.uri | http://hdl.handle.net/2183/32815 | |
dc.description | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG. | es_ES |
dc.description.abstract | [Abstract]: During the last years, deep learning techniques have emerged as powerful alternatives to solve biomedical image analysis problems. However, the training of deep neural networks usually needs great amounts of labeled data to be done effectively. This is even more critical in the case of biomedical imaging due to the added difficulty of obtaining data labeled by experienced clinicians. To mitigate the impact of data scarcity, one of the most commonly used strategies is transfer learning. Nevertheless, the success of this approach depends on the effectiveness of the available pre-training techniques for learning from little or no labeled data. In this work, we explore the application of the Context Encoder paradigm for transfer learning in the domain of retinal image analysis. To this aim, we propose several approaches that allow to work with full resolution images and improve the recognition of the retinal structures. In order to validate the proposals, the Context Encoder pre-trained models are fine-tuned to perform two relevant tasks in the domain: vessels segmentation and fovea localization. The experiments performed on different public datasets demonstrate that the proposed Context Encoder approaches allow mitigating the impact of data scarcity, being superior to previous alternatives in this domain. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED481A 2021/196 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED481B-2022-025 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2020/24 | es_ES |
dc.description.sponsorship | Xunta de Galicia; IN845D 2020/38 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.description.sponsorship | This research was funded by Instituto de Salud Carlos III, Gov- ernment of Spain, DTS18/00136 research project; Ministerio de Cien- cia e Innovación y Universidades, Government of Spain, RTI2018- 095894-B-I00 research project; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Univer- sidade, Xunta de Galicia, Spain through the predoctoral grant contract ref. ED481A 2021/196 and postdoctoral grant contract ref. ED481B- 2022-025; and Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; Axencia Galega de Innovación (GAIN), Spain, Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia, Spain ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, Spain, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). Funding for open access charge: Universidade da Coruña/CISUG. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier Ltd | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICA | es_ES |
dc.relation | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DTS18%2F00136/ES/PLATAFORMA ONLINE PARA PREVENCION Y DETECCION PRECOZ DE ENFERMEDAD VASCULAR MEDIANTE ANALISIS AUTOMATIZADO DE INFORMACION E IMAGEN CLINICA | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACION Y CARACTERIZACION COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLOGICA: ESTUDIOS EN ESCLEROSIS MULTIPLE | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.compbiomed.2022.106451 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Biomedical imaging | es_ES |
dc.subject | Context Encoder | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Eye fundus | es_ES |
dc.subject | Self-supervised learning | es_ES |
dc.subject | Transfer learning | es_ES |
dc.title | Context encoder transfer learning approaches for retinal image analysis | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | Computers in Biology and Medicine | es_ES |
UDC.volume | 152 | es_ES |
UDC.issue | January | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
GI-VARPA - Artigos [80]