Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Tecnoloxía Electrónica e Comunicacións (GTEC)
  • GI-GTEC - Congresos, conferencias, etc.
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Tecnoloxía Electrónica e Comunicacións (GTEC)
  • GI-GTEC - Congresos, conferencias, etc.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of Machine Learning Techniques for EEG Eye State Detection

Thumbnail
View/Open
F.Laport_2020_Study_of_Machine_Learning_Techniques_for_EEG_Eye.pdf (165.2Kb)
Use this link to cite
http://hdl.handle.net/2183/26640
Atribución 4.0
Except where otherwise noted, this item's license is described as Atribución 4.0
Collections
  • GI-GTEC - Congresos, conferencias, etc. [27]
Metadata
Show full item record
Title
Study of Machine Learning Techniques for EEG Eye State Detection
Author(s)
Laport López, Francisco
Castro-Castro, Paula-María
Dapena, Adriana
Vázquez Araújo, Francisco Javier
Iglesia, Daniel I.
Date
2020-08-31
Citation
Laport, F.; Castro, P.M.; Dapena, A.; Vazquez-Araujo, F.J.; Iglesia, D. Study of Machine Learning Techniques for EEG Eye State Detection. Proceedings 2020, 54, 53. https://doi.org/10.3390/proceedings2020054053
Abstract
[Abstract] A comparison of different machine learning techniques for eye state identification through Electroencephalography (EEG) signals is presented in this paper. (1) Background: We extend our previous work by studying several techniques for the extraction of the features corresponding to the mental states of open and closed eyes and their subsequent classification; (2) Methods: A prototype developed by the authors is used to capture the brain signals. We consider the Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT) for feature extraction; Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) for state classification; and Independent Component Analysis (ICA) for preprocessing the data; (3) Results: The results obtained from some subjects show the good performance of the proposed methods; and (4) Conclusion: The combination of several techniques allows us to obtain a high accuracy of eye identification.
Keywords
Discrete fourier transform
Discrete wavelet transform
Linear discriminant analysis
Support vector machine
Independent component analysis
 
Editor version
https://doi.org/10.3390/proceedings2020054053
Rights
Atribución 4.0
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback