Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of Machine Learning Techniques for EEG Eye State Detection

Thumbnail
Ver/abrir
F.Laport_2020_Study_of_Machine_Learning_Techniques_for_EEG_Eye.pdf (165.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/26640
Atribución 4.0
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0
Coleccións
  • Investigación (FIC) [1682]
Metadatos
Mostrar o rexistro completo do ítem
Título
Study of Machine Learning Techniques for EEG Eye State Detection
Autor(es)
Laport, Francisco
Castro-Castro, Paula-María
Dapena, Adriana
Vázquez Araújo, Francisco Javier
Iglesia, Daniel I.
Data
2020-08-31
Cita bibliográfica
Laport, F.; Castro, P.M.; Dapena, A.; Vazquez-Araujo, F.J.; Iglesia, D. Study of Machine Learning Techniques for EEG Eye State Detection. Proceedings 2020, 54, 53. https://doi.org/10.3390/proceedings2020054053
Resumo
[Abstract] A comparison of different machine learning techniques for eye state identification through Electroencephalography (EEG) signals is presented in this paper. (1) Background: We extend our previous work by studying several techniques for the extraction of the features corresponding to the mental states of open and closed eyes and their subsequent classification; (2) Methods: A prototype developed by the authors is used to capture the brain signals. We consider the Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT) for feature extraction; Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) for state classification; and Independent Component Analysis (ICA) for preprocessing the data; (3) Results: The results obtained from some subjects show the good performance of the proposed methods; and (4) Conclusion: The combination of several techniques allows us to obtain a high accuracy of eye identification.
Palabras chave
Discrete fourier transform
Discrete wavelet transform
Linear discriminant analysis
Support vector machine
Independent component analysis
 
Versión do editor
https://doi.org/10.3390/proceedings2020054053
Dereitos
Atribución 4.0
ISSN
2504-3900

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións