Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of Machine Learning Techniques for EEG Eye State Detection

Thumbnail
View/Open
F.Laport_2020_Study_of_Machine_Learning_Techniques_for_EEG_Eye.pdf (165.2Kb)
Use this link to cite
http://hdl.handle.net/2183/26640
Atribución 4.0
Except where otherwise noted, this item's license is described as Atribución 4.0
Collections
  • Investigación (FIC) [1679]
Metadata
Show full item record
Title
Study of Machine Learning Techniques for EEG Eye State Detection
Author(s)
Laport, Francisco
Castro-Castro, Paula-María
Dapena, Adriana
Vázquez Araújo, Francisco Javier
Iglesia, Daniel I.
Date
2020-08-31
Citation
Laport, F.; Castro, P.M.; Dapena, A.; Vazquez-Araujo, F.J.; Iglesia, D. Study of Machine Learning Techniques for EEG Eye State Detection. Proceedings 2020, 54, 53. https://doi.org/10.3390/proceedings2020054053
Abstract
[Abstract] A comparison of different machine learning techniques for eye state identification through Electroencephalography (EEG) signals is presented in this paper. (1) Background: We extend our previous work by studying several techniques for the extraction of the features corresponding to the mental states of open and closed eyes and their subsequent classification; (2) Methods: A prototype developed by the authors is used to capture the brain signals. We consider the Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT) for feature extraction; Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) for state classification; and Independent Component Analysis (ICA) for preprocessing the data; (3) Results: The results obtained from some subjects show the good performance of the proposed methods; and (4) Conclusion: The combination of several techniques allows us to obtain a high accuracy of eye identification.
Keywords
Discrete fourier transform
Discrete wavelet transform
Linear discriminant analysis
Support vector machine
Independent component analysis
 
Editor version
https://doi.org/10.3390/proceedings2020054053
Rights
Atribución 4.0
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback