dc.contributor.author | Baamonde Álvarez, Sergio | |
dc.contributor.author | Cabana, Martiño | |
dc.contributor.author | Sillero, Neftalí | |
dc.contributor.author | Penedo, Manuel | |
dc.contributor.author | Naveira, Horacio | |
dc.contributor.author | Novo Buján, Jorge | |
dc.date.accessioned | 2020-01-13T16:53:45Z | |
dc.date.available | 2020-01-13T16:53:45Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Baamonde, Sergio, et al. Fully automatic multi-temporal land cover classification using Sentinel-2 image data. Procedia Computer Science, 2019, vol. 159, p. 650-657. | es_ES |
dc.identifier.issn | 1877-0509 | |
dc.identifier.uri | http://hdl.handle.net/2183/24597 | |
dc.description.abstract | [Abstract] The analysis of remote sensing images represents a highly important issue to be performed in many relevant fields such as climate change studies or land cover mapping. Traditional proposals usually identify the land cover classes from general related groups such as different tree species or different crop varieties. Additionally, these proposals commonly use information from a precise time span or season, not accounting for the variability of the data over the entire year, specially in regions with several seasons.
In this work, we propose a multi-temporal classification system to identify and represent diverse land cover classes over any period of the entire year by using Sentinel-2 satellite image data. To this end, 526 representative samples were labelled from 5 complex and variable different land cover types over the Special Area of Conservation (SAC) Betanzos-Mandeo in the northwest of the Iberian Peninsula. The method achieves a satisfactory mean accuracy value of 84.0% for the testing set using the best configuration with a radial Support Vector Machine classifier. This system will be used in the study of the population connectivity of two threatened herptiles, but it can be easily extended to other species of interest in the future. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2016-047 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier BV | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.procs.2019.09.220 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/es/ | * |
dc.subject | Remote sensing | es_ES |
dc.subject | Sentinel-2 | es_ES |
dc.subject | Land cover classification | es_ES |
dc.subject | Machine learning | es_ES |
dc.title | Fully automatic multi-temporal land cover classification using Sentinel-2 image data | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | Procedia Computer Science | es_ES |
UDC.volume | 159 | es_ES |
UDC.startPage | 650 | es_ES |
UDC.endPage | 657 | es_ES |
dc.identifier.doi | 10.1016/j.procs.2019.09.220 | |
UDC.conferenceTitle | 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems | es_ES |