Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fully automatic multi-temporal land cover classification using Sentinel-2 image data

Thumbnail
View/Open
S.Baamonde_Fully_automatic_multi-temporal_land_cover_classification_using_Sentinel-2_image_data_2019.pdf (3.995Mb)
Use this link to cite
http://hdl.handle.net/2183/24597
Atribución-NoComercial-SinDerivadas 4.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 España
Collections
  • Investigación (FIC) [1682]
Metadata
Show full item record
Title
Fully automatic multi-temporal land cover classification using Sentinel-2 image data
Author(s)
Baamonde, Sergio
Cabana, Martiño
Sillero, Neftalí
Penedo, Manuel
Naveira, Horacio
Novo Buján, Jorge
Date
2019
Citation
Baamonde, Sergio, et al. Fully automatic multi-temporal land cover classification using Sentinel-2 image data. Procedia Computer Science, 2019, vol. 159, p. 650-657.
Abstract
[Abstract] The analysis of remote sensing images represents a highly important issue to be performed in many relevant fields such as climate change studies or land cover mapping. Traditional proposals usually identify the land cover classes from general related groups such as different tree species or different crop varieties. Additionally, these proposals commonly use information from a precise time span or season, not accounting for the variability of the data over the entire year, specially in regions with several seasons. In this work, we propose a multi-temporal classification system to identify and represent diverse land cover classes over any period of the entire year by using Sentinel-2 satellite image data. To this end, 526 representative samples were labelled from 5 complex and variable different land cover types over the Special Area of Conservation (SAC) Betanzos-Mandeo in the northwest of the Iberian Peninsula. The method achieves a satisfactory mean accuracy value of 84.0% for the testing set using the best configuration with a radial Support Vector Machine classifier. This system will be used in the study of the population connectivity of two threatened herptiles, but it can be easily extended to other species of interest in the future.
Keywords
Remote sensing
Sentinel-2
Land cover classification
Machine learning
 
Editor version
https://doi.org/10.1016/j.procs.2019.09.220
Rights
Atribución-NoComercial-SinDerivadas 4.0 España
ISSN
1877-0509

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback