Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Investigación en Xerontoloxía e Xeriatría (GIGG)
  • GI-GIGG - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Investigación en Xerontoloxía e Xeriatría (GIGG)
  • GI-GIGG - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of single normal and Alzheimer's disease individuals from cortical sources of resting state EEG rhythms

Thumbnail
View/Open
Babiloni_ClassificationSingle.pdf (4.789Mb)
Use this link to cite
http://hdl.handle.net/2183/16099
Creative Commons Licence
Except where otherwise noted, this item's license is described as Creative Commons Licence
Collections
  • GI-GIGG - Artigos [101]
Metadata
Show full item record
Title
Classification of single normal and Alzheimer's disease individuals from cortical sources of resting state EEG rhythms
Author(s)
Babiloni, Claudio
Triggiani, Antonio I.
Lizio, Roberta
Cordone, Susanna
Tattoli, Giacomo
Bevilacqua, Vitoantonio
Soricelli, Andrea
Ferri, Raffaele
Nobili, Flavio
Gesualdo, Loreto
Millán-Calenti, José Carlos
Buján, Ana
Tortelli, Rosanna
Cardinali, Valentina
Barulli, Maria Rosaria
Giannini, Antonio
Spagnolo, Pantaleo
Armenise, Silvia
Buenza, Grazia
Scianatico, Giancarlo
Logroscino, Giancarlo
Frisoni, Giovanni B.
Percio, Claudio del
Date
2016-02-23
Citation
Babiloni C, Triggiani AI, Lizio R, et al. Classification of single normal and Alzheimer's disease individuals from cortical sources of resting state EEG rhythms. Front Neurosci. 2016 Feb;10(47)
Abstract
[Abstract] Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%.
Keywords
Alzheimer's disease (AD)
Electroencephalography (EEG)
Exact low-resolution brain electromagnetic tomography (eLORETA)
Spectral coherence
Lagged linear connectivity
Area under the receiver operating characteristic curve (AUROC)
Delta rhythms
Alpha rhythms
 
Editor version
http://dx.doi.org/10.3389/fnins.2016.00047
Rights
Creative Commons Licence
 
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback