Mostrar o rexistro simple do ítem
Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors
dc.contributor.author | Figueroa, Jorge | |
dc.contributor.author | Rivas-Villar, David | |
dc.contributor.author | Rouco, J. | |
dc.contributor.author | Novo Buján, Jorge | |
dc.date.accessioned | 2024-07-05T18:21:21Z | |
dc.date.available | 2024-07-05T18:21:21Z | |
dc.date.issued | 2024-02-15 | |
dc.identifier.citation | J. Figueroa, D. Rivas-Villar, J. Rouco, y J. Novo, «Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors», Heliyon, vol. 10, n.o 3, p. e25367, feb. 2024, doi: 10.1016/j.heliyon.2024.e25367. | es_ES |
dc.identifier.issn | 2405-8440 | |
dc.identifier.uri | http://hdl.handle.net/2183/37781 | |
dc.description.abstract | [Absctract]: Water quality can be negatively affected by the presence of some toxic phytoplankton species, whose toxins are difficult to remove by conventional purification systems. This creates the need for periodic analyses, which are nowadays manually performed by experts. These labor-intensive processes are affected by subjectivity and expertise, causing unreliability. Some automatic systems have been proposed to address these limitations. However, most of them are based on classical image processing pipelines with not easily scalable designs. In this context, deep learning techniques are more adequate for the detection and recognition of phytoplankton specimens in multi-specimen microscopy images, as they integrate both tasks in a single end-to-end trainable module that is able to automatize the adaption to such a complex domain. In this work, we explore the use of two different object detectors: Faster R-CNN and RetinaNet, from the one-stage and two-stage paradigms respectively. We use a dataset composed of multi-specimen microscopy images captured using a systematic protocol. This allows the use of widely available optical microscopes, also avoiding manual adjustments on a per-specimen basis, which would require expert knowledge. We have made our dataset publicly available to improve the reproducibility and to foment the development of new alternatives in the field. The selected Faster R-CNN methodology reaches maximum recall levels of 95.35%, 84.69%, and 79.81%, and precisions of 94.68%, 89.30% and 82.61%, for W. naegeliana, A. spiroides, and D. sociale, respectively. The system is able to adapt to the dataset problems and improves the results overall with respect to the reference state-of-the-art work. In addition, the proposed system improves the automation and abstraction from the domain and simplifies the workflow and adjustment. | es_ES |
dc.description.sponsorship | This research was funded by Ministerio de Innovación, Government of Spain [research projects PDC2022-133132-I00, PID2019-108435RB-I00 and TED2021-131201B-I00]; Consellería de Cultura, Educación e Universidade, Xunta de Galicia through the predoctoral grant contracts ref. ED481A 2021/147 and ED481A 2023/059, and Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED481A 2021/147 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED481A 2023/059 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2020/24 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.heliyon.2024.e25367 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Microscopy images | es_ES |
dc.subject | Phytoplankton detection | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Faster R-CNN | es_ES |
dc.subject | RetinaNet | es_ES |
dc.title | Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Heliyon | es_ES |
UDC.volume | 10 | es_ES |
UDC.issue | 3 | es_ES |
UDC.startPage | e25367 | es_ES |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Visión Artificial e Recoñecemento de Patróns (VARPA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACIÓN Y CARACTERIZACIÓN COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLÓGICA: ESTUDIOS EN ESCLEROSIS MÚLTIPLE | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131201B-I00/ES/DIAGNÓSTICO DIGITAL: TRANSFORMACIÓN DE LA DETECCIÓN DE ENFERMEDADES NEUROVASCULARES Y DEL TRATAMIENTO DE LOS PACIENTES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PDC2022-133132-I00/ES/MEJORAS EN EL DIAGNÓSTICO E INVESTIGACIÓN CLÍNICO MEDIANTE TECNOLOGÍAS INTELIGENTES APLICADAS LA IMAGEN OFTALMOLÓGICA | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1654]