Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors

Thumbnail
Ver/abrir
Figueroa_Jorge_2023_Phytoplankton_detect_freshwater_dig_micro_images.pdf (6.950Mb)
Use este enlace para citar
http://hdl.handle.net/2183/37781
Atribución-NoComercial-SinDerivadas 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
  • Investigación (FIC) [1720]
Metadatos
Mostrar o rexistro completo do ítem
Título
Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors
Autor(es)
Figueroa, Jorge
Rivas-Villar, David
Rouco, J.
Novo Buján, Jorge
Data
2024-02-15
Cita bibliográfica
J. Figueroa, D. Rivas-Villar, J. Rouco, y J. Novo, «Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors», Heliyon, vol. 10, n.o 3, p. e25367, feb. 2024, doi: 10.1016/j.heliyon.2024.e25367.
Resumo
[Absctract]: Water quality can be negatively affected by the presence of some toxic phytoplankton species, whose toxins are difficult to remove by conventional purification systems. This creates the need for periodic analyses, which are nowadays manually performed by experts. These labor-intensive processes are affected by subjectivity and expertise, causing unreliability. Some automatic systems have been proposed to address these limitations. However, most of them are based on classical image processing pipelines with not easily scalable designs. In this context, deep learning techniques are more adequate for the detection and recognition of phytoplankton specimens in multi-specimen microscopy images, as they integrate both tasks in a single end-to-end trainable module that is able to automatize the adaption to such a complex domain. In this work, we explore the use of two different object detectors: Faster R-CNN and RetinaNet, from the one-stage and two-stage paradigms respectively. We use a dataset composed of multi-specimen microscopy images captured using a systematic protocol. This allows the use of widely available optical microscopes, also avoiding manual adjustments on a per-specimen basis, which would require expert knowledge. We have made our dataset publicly available to improve the reproducibility and to foment the development of new alternatives in the field. The selected Faster R-CNN methodology reaches maximum recall levels of 95.35%, 84.69%, and 79.81%, and precisions of 94.68%, 89.30% and 82.61%, for W. naegeliana, A. spiroides, and D. sociale, respectively. The system is able to adapt to the dataset problems and improves the results overall with respect to the reference state-of-the-art work. In addition, the proposed system improves the automation and abstraction from the domain and simplifies the workflow and adjustment.
Palabras chave
Microscopy images
Phytoplankton detection
Deep learning
Faster R-CNN
RetinaNet
 
Versión do editor
https://doi.org/10.1016/j.heliyon.2024.e25367
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
2405-8440

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións