Mostrar o rexistro simple do ítem
PlayNet: real-time handball play classification with Kalman embeddings and neural networks
dc.contributor.author | Mures, Omar A. | |
dc.contributor.author | Taibo, Javier | |
dc.contributor.author | Padrón, Emilio J. | |
dc.contributor.author | Iglesias-Guitian, Jose A. | |
dc.date.accessioned | 2024-06-28T08:09:48Z | |
dc.date.available | 2024-06-28T08:09:48Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Mures, O.A., Taibo, J., Padrón, E.J. et al. (2023) PlayNet: real-time handball play classification with Kalman embeddings and neural networks. Vis Comput 40 (4), 2695–2711 | es_ES |
dc.identifier.issn | 0178-2789 | |
dc.identifier.uri | http://hdl.handle.net/2183/37536 | |
dc.description | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature | es_ES |
dc.description.abstract | [Abstract] Real-time play recognition and classification algorithms are crucial for automating video production and live broadcasts of sporting events. However, current methods relying on human pose estimation and deep neural networks introduce high latency on commodity hardware, limiting their usability in low-cost real-time applications. We present PlayNet, a novel approach toreal-time handball play classification. Our method is based on Kalman embeddings, a new low-dimensional representation for game states that enables efficient operation on commodity hardware and customized camera layouts. Firstly, we leverage Kalman filtering to detect and track the main agents in the playing field, allowing us to represent them in a single normalized coordinate space. Secondly,weutilize a neural network trained in nonlinear dimensionality reduction through fuzzy topological data structure analysis. As a result, PlayNet achieves real-time play classification with under 55 ms of latency on commodity hardware, making it a promising addition to automated live broadcasting and game analysis pipelines. | es_ES |
dc.description.sponsorship | This work has been developed under the European Innovation Council Pilot No 954040. This work was supported also by ED431F 2021/11 and ED431G 2019/01 funded by Xunta de Galicia. Emilio J. Padrón’s work was also partially supported through the research projects PID2019-104184RB-I00 funded by MCIN/AEI/10.13039/501100011033, and ED431C 2021/30. Jose A. Iglesias-Guitian also acknowledges the UDC-Inditex InTalent programme and the Spanish Ministry of Science and Innovation (AEI/RYC2018-025385-I). | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431F 2021/11 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2021/30 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/954040 | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104184RB-I00/ES/ALGORITMOS ESCALABLES DE -APRENDIZAJE COMPUTACIONAL: MAS ALLA DE LA CLASIFICACION Y LA REGRESION | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-025385-I/ES/ | es_ES |
dc.relation.uri | https://doi.org/10.1007/s00371-023-02972-1 | es_ES |
dc.rights | Atribución 4.0 Internacional | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Handball play classification | es_ES |
dc.subject | Real-time multimedia | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Kalman filtering | es_ES |
dc.subject | Dimensionality reduction | es_ES |
dc.title | PlayNet: real-time handball play classification with Kalman embeddings and neural networks | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | The Visual Computer, International Journal of Computer Graphics | es_ES |
UDC.volume | 40 | es_ES |
UDC.issue | 4 | es_ES |
UDC.startPage | 2695 | es_ES |
UDC.endPage | 2711 | es_ES |
UDC.coleccion | Investigación | |
UDC.departamento | Enxeñaría de Computadores | |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | |
UDC.grupoInv | Computer Graphics & Visual Computing (XLab) | |
UDC.grupoInv | Models and Applications of Distributed Systems (MADS) | |
UDC.grupoInv | Grupo de Arquitectura de Computadores (GAC) |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1615]