Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

PlayNet: real-time handball play classification with Kalman embeddings and neural networks

Thumbnail
Ver/Abrir
Mures_Omar_2023_Playnet_real_time_handball.pdf (1.665Mb)
Use este enlace para citar
http://hdl.handle.net/2183/37536
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1683]
Metadatos
Mostrar el registro completo del ítem
Título
PlayNet: real-time handball play classification with Kalman embeddings and neural networks
Autor(es)
Mures, Omar A.
Taibo, Javier
Padrón, Emilio J.
Iglesias-Guitian, Jose A.
Fecha
2024
Cita bibliográfica
Mures, O.A., Taibo, J., Padrón, E.J. et al. (2023) PlayNet: real-time handball play classification with Kalman embeddings and neural networks. Vis Comput 40 (4), 2695–2711
Resumen
[Abstract] Real-time play recognition and classification algorithms are crucial for automating video production and live broadcasts of sporting events. However, current methods relying on human pose estimation and deep neural networks introduce high latency on commodity hardware, limiting their usability in low-cost real-time applications. We present PlayNet, a novel approach toreal-time handball play classification. Our method is based on Kalman embeddings, a new low-dimensional representation for game states that enables efficient operation on commodity hardware and customized camera layouts. Firstly, we leverage Kalman filtering to detect and track the main agents in the playing field, allowing us to represent them in a single normalized coordinate space. Secondly,weutilize a neural network trained in nonlinear dimensionality reduction through fuzzy topological data structure analysis. As a result, PlayNet achieves real-time play classification with under 55 ms of latency on commodity hardware, making it a promising addition to automated live broadcasting and game analysis pipelines.
Palabras clave
Handball play classification
Real-time multimedia
Neural networks
Kalman filtering
Dimensionality reduction
 
Descripción
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
Versión del editor
https://doi.org/10.1007/s00371-023-02972-1
Derechos
Atribución 4.0 Internacional
ISSN
0178-2789

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias