Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D Point Cloud Semantic Segmentation Through Functional Data Analysis

Thumbnail
Ver/abrir
OviedodelaFuente_Manuel_2023_3D_Point_Cloud_Semantic_Segmentation_Through_Functional_Data_Analysis.pdf (3.615Mb)
Use este enlace para citar
http://hdl.handle.net/2183/37481
Attribution 4.0 International License (CC BY)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution 4.0 International License (CC BY)
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
3D Point Cloud Semantic Segmentation Through Functional Data Analysis
Autor(es)
Oviedo de la Fuente, Manuel
Cabo, Carlos
Roca-Pardiñas, Javier
Loudermilk, E. Louise
Ordóñez, Celestino
Data
2023
Cita bibliográfica
Oviedo de la Fuente, M., Cabo, C., Roca-Pardiñas, J., Loudermilk, E. L., & Ordóñez, C. (2023). 3D Point Cloud Semantic Segmentation Through Functional Data Analysis. Journal of Agricultural, Biological, and Environmental Statistics. https://doi.org/10.1007/S13253-023-00567-W
Resumo
[Abstract]: Here, we propose a method for the semantic segmentation of 3D point clouds based on functional data analysis. For each point of a training set, a number of handcrafted features representing the local geometry around it are calculated at different scales, that is, varying the spatial extension of the local analysis. Calculating the scales at small intervals allows each feature to be accurately approximated using a smooth function and, for the problem of semantic segmentation, to be tackled using functional data analysis. We also present a step-wise method to select the optimal features to include in the model based on the calculation of the distance correlation between each feature and the response variable. The algorithm showed promising results when applied to simulated data. When applied to the semantic segmentation of a point cloud of a forested plot, the results proved better than when using a standard multiscale semantic segmentation method. The comparison with two popular deep learning models showed that our proposal requires smaller training samples sizes and that it can compete with these methods in terms of prediction.
Palabras chave
Functional data
Laser scanning
Multiclass classification
Multiscale analysis
Variable selection
 
Descrición
Financiado para publicación en acceso aberto: CRUE-CSIC/Springer Nature.
Versión do editor
https://doi.org/10.1007/s13253-023-00567-w
Dereitos
Attribution 4.0 International License (CC BY)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións