Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D Point Cloud Semantic Segmentation Through Functional Data Analysis

Thumbnail
View/Open
OviedodelaFuente_Manuel_2023_3D_Point_Cloud_Semantic_Segmentation_Through_Functional_Data_Analysis.pdf (3.615Mb)
Use this link to cite
http://hdl.handle.net/2183/37481
Attribution 4.0 International License (CC BY)
Except where otherwise noted, this item's license is described as Attribution 4.0 International License (CC BY)
Collections
  • Investigación (FIC) [1729]
Metadata
Show full item record
Title
3D Point Cloud Semantic Segmentation Through Functional Data Analysis
Author(s)
Oviedo de la Fuente, Manuel
Cabo, Carlos
Roca-Pardiñas, Javier
Loudermilk, E. Louise
Ordóñez, Celestino
Date
2023
Citation
Oviedo de la Fuente, M., Cabo, C., Roca-Pardiñas, J., Loudermilk, E. L., & Ordóñez, C. (2023). 3D Point Cloud Semantic Segmentation Through Functional Data Analysis. Journal of Agricultural, Biological, and Environmental Statistics. https://doi.org/10.1007/S13253-023-00567-W
Abstract
[Abstract]: Here, we propose a method for the semantic segmentation of 3D point clouds based on functional data analysis. For each point of a training set, a number of handcrafted features representing the local geometry around it are calculated at different scales, that is, varying the spatial extension of the local analysis. Calculating the scales at small intervals allows each feature to be accurately approximated using a smooth function and, for the problem of semantic segmentation, to be tackled using functional data analysis. We also present a step-wise method to select the optimal features to include in the model based on the calculation of the distance correlation between each feature and the response variable. The algorithm showed promising results when applied to simulated data. When applied to the semantic segmentation of a point cloud of a forested plot, the results proved better than when using a standard multiscale semantic segmentation method. The comparison with two popular deep learning models showed that our proposal requires smaller training samples sizes and that it can compete with these methods in terms of prediction.
Keywords
Functional data
Laser scanning
Multiclass classification
Multiscale analysis
Variable selection
 
Description
Financiado para publicación en acceso aberto: CRUE-CSIC/Springer Nature.
Editor version
https://doi.org/10.1007/s13253-023-00567-w
Rights
Attribution 4.0 International License (CC BY)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback