Mostrar o rexistro simple do ítem
Protein structure prediction with energy minimization and deep learning approaches
dc.contributor.author | Filgueiras Rilo, Juan Luis | |
dc.contributor.author | Varela, Daniel | |
dc.contributor.author | Santos Reyes, José | |
dc.date.accessioned | 2024-06-26T12:07:01Z | |
dc.date.available | 2024-06-26T12:07:01Z | |
dc.date.issued | 2023-12 | |
dc.identifier.citation | J. L.Filgueiras, D. Varela & J. Santos, "Protein structure prediction with energy minimization and deep learning approaches", Natural Computing, Vol. 22, Issue 4, pp. 659 - 670, Dec. 2023, doi: 10.1007/s11047-023-09943-4 | es_ES |
dc.identifier.issn | 1567-7818 | |
dc.identifier.uri | http://hdl.handle.net/2183/37418 | |
dc.description | Financiado para publicación en acceso aberto: CRUE-CSIC/Springer Nature | es_ES |
dc.description.abstract | [Abstract]: In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study was funded by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014-2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2022/33 and IN845D-02 (funded by the “Agencia Gallega de Innovación”, co-financed by Feder funds, supported by the “Consellería de Economía, Empleo e Industria” of Xunta de Galicia), and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00). | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431B 2022/33 | es_ES |
dc.description.sponsorship | Xunta de Galicia; IN845D-02 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Science and Business Media B.V. | es_ES |
dc.relation.uri | https://doi.org/10.1007/s11047-023-09943-4 | es_ES |
dc.rights | Attribution 4.0 International License | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Crowding niching method | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Differential evolution | es_ES |
dc.subject | Evolutionary computing niching methods | es_ES |
dc.subject | Protein structure prediction | es_ES |
dc.title | Protein structure prediction with energy minimization and deep learning approaches | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Natural Computing | es_ES |
UDC.volume | 22 | es_ES |
UDC.issue | 4 | es_ES |
UDC.startPage | 659 | es_ES |
UDC.endPage | 670 | es_ES |
dc.identifier.doi | 10.1007/s11047-023-09943-4 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Information Retrieval Lab (IRlab) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116201GB-I00/ES/RAZONAMIENTO AUTOMATICO Y APRENDIZAJE CON INDUCCION DE CONOCIMIENTO/ | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1654]