Mostrar o rexistro simple do ítem

dc.contributor.authorFilgueiras Rilo, Juan Luis
dc.contributor.authorVarela, Daniel
dc.contributor.authorSantos Reyes, José
dc.date.accessioned2024-06-26T12:07:01Z
dc.date.available2024-06-26T12:07:01Z
dc.date.issued2023-12
dc.identifier.citationJ. L.Filgueiras, D. Varela & J. Santos, "Protein structure prediction with energy minimization and deep learning approaches", Natural Computing, Vol. 22, Issue 4, pp. 659 - 670, Dec. 2023, doi: 10.1007/s11047-023-09943-4es_ES
dc.identifier.issn1567-7818
dc.identifier.urihttp://hdl.handle.net/2183/37418
dc.descriptionFinanciado para publicación en acceso aberto: CRUE-CSIC/Springer Naturees_ES
dc.description.abstract[Abstract]: In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study was funded by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014-2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2022/33 and IN845D-02 (funded by the “Agencia Gallega de Innovación”, co-financed by Feder funds, supported by the “Consellería de Economía, Empleo e Industria” of Xunta de Galicia), and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00).es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.description.sponsorshipXunta de Galicia; ED431B 2022/33es_ES
dc.description.sponsorshipXunta de Galicia; IN845D-02es_ES
dc.language.isoenges_ES
dc.publisherSpringer Science and Business Media B.V.es_ES
dc.relation.urihttps://doi.org/10.1007/s11047-023-09943-4es_ES
dc.rightsAttribution 4.0 International Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectCrowding niching methodes_ES
dc.subjectDeep learninges_ES
dc.subjectDifferential evolutiones_ES
dc.subjectEvolutionary computing niching methodses_ES
dc.subjectProtein structure predictiones_ES
dc.titleProtein structure prediction with energy minimization and deep learning approacheses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleNatural Computinges_ES
UDC.volume22es_ES
UDC.issue4es_ES
UDC.startPage659es_ES
UDC.endPage670es_ES
dc.identifier.doi10.1007/s11047-023-09943-4
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvInformation Retrieval Lab (IRlab)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116201GB-I00/ES/RAZONAMIENTO AUTOMATICO Y APRENDIZAJE CON INDUCCION DE CONOCIMIENTO/es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem