Protein structure prediction with energy minimization and deep learning approaches

Use este enlace para citar
http://hdl.handle.net/2183/37418
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution 4.0 International License
Coleccións
- Investigación (FIC) [1654]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Protein structure prediction with energy minimization and deep learning approachesData
2023-12Cita bibliográfica
J. L.Filgueiras, D. Varela & J. Santos, "Protein structure prediction with energy minimization and deep learning approaches", Natural Computing, Vol. 22, Issue 4, pp. 659 - 670, Dec. 2023, doi: 10.1007/s11047-023-09943-4
Resumo
[Abstract]: In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.
Palabras chave
Crowding niching method
Deep learning
Differential evolution
Evolutionary computing niching methods
Protein structure prediction
Deep learning
Differential evolution
Evolutionary computing niching methods
Protein structure prediction
Descrición
Financiado para publicación en acceso aberto: CRUE-CSIC/Springer Nature
Versión do editor
Dereitos
Attribution 4.0 International License
ISSN
1567-7818