dc.contributor.author | Baamonde, Sergio | |
dc.contributor.author | Moura, Joaquim de | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2024-06-18T10:35:52Z | |
dc.date.available | 2024-06-18T10:35:52Z | |
dc.date.issued | 2017-05-18 | |
dc.identifier.citation | Baamonde, S., de Moura, J., Novo, J., Ortega, M. (2017). Automatic Detection of Epiretinal Membrane in OCT Images by Means of Local Luminosity Patterns. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science, vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_20 | es_ES |
dc.identifier.isbn | 978-3-319-59152-0 | |
dc.identifier.isbn | 978-3-319-59153-7 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | http://hdl.handle.net/2183/37071 | |
dc.description | The conference was held in Cadiz, Spain, June 14-16, 2017. | es_ES |
dc.description | ©2017 This version of the article has been accepted for publication, after
peer review and is subject to Springer Nature’s AM terms of use, but is not
the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-319-59153-7_20 | es_ES |
dc.description.abstract | [Absctract]: This work presents a novel approach for automatic detection of the epiretinal membrane in Optical Coherence Tomography (OCT) images. A tool able to detect this pathology is very valued since it can prevent further ocular damage by doing an early detection. This approach is based in the location of the inner limiting membrane (ILM) layers of the retina. Then, the detected locations are classified using a local-feature based vector in order to determine presence of the membrane. Different tests are run and compared to establish the appropriateness of the approach as well as its practical validity. | es_ES |
dc.description.sponsorship | This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union throug the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/PI14%2F02161/ES/DESARROLLO DE UN SISTEMA AUTOMÁTICO PARA EL CÁLCULO Y VISUALIZACIÓN DE PROPIEDADES ANATÓMICAS DE LA RETINA EN SD-OCT Y SU CORRELACIÓN CON ANÁLISIS FUNCIONALES HETEROGÉNEOS DE LA VISIÓN | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DTS15%2F00153/ES/SIRIUS - SISTEMA DE ANÁLISIS DE MICROCIRCULACIÓN RETINIANA: EVALUACIÓN MULTIDISCIPLINAR E INTEGRACIÓN EN PROTOCOLOS CLÍNICOS | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2015-69948-R/ES/IDENTIFICACION Y CARACTERIZACION DEL EDEMA MACULAR DIABETICO MEDIANTE ANALISIS AUTOMATICO DE TOMOGRAFIAS DE COHERENCIA OPTICA Y TECNICAS DE APRENDIZAJE MAQUINA | es_ES |
dc.relation.uri | https://doi.org/10.1007/978-3-319-59153-7_20 | es_ES |
dc.subject | Epiretinal membrane | es_ES |
dc.subject | Retinal layers | es_ES |
dc.subject | Medical imaging | es_ES |
dc.subject | Optical coherence tomography | es_ES |
dc.title | Automatic Detection of Epiretinal Membrane in OCT Images by Means of Local Luminosity Patterns | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | Advances in Computational Intelligence: 14th International Work-Conference on Artificial Neural Networks, IWANN 2017, Cadiz, Spain, June 14-16, 2017, Proceedings, Part I ( Lecture Notes in Computer Science, LNCS) | es_ES |
UDC.volume | 10305 | es_ES |
UDC.startPage | 222 | es_ES |
UDC.endPage | 235 | es_ES |
UDC.conferenceTitle | 14th International Work-Conference on Artificial Neural Networks, IWANN 2017 | es_ES |