Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Economía e Empresa
  • Investigación (FEE)
  • View Item
  •   DSpace Home
  • Facultade de Economía e Empresa
  • Investigación (FEE)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiperiod Bankruptcy Prediction Models with Interpretable Single Models

Thumbnail
View/Open
Beade_Angel_2023_Multiperiod Bankruptcy Prediction Models.pdf (1.071Mb)
Use this link to cite
http://hdl.handle.net/2183/36891
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FEE) [923]
Metadata
Show full item record
Title
Multiperiod Bankruptcy Prediction Models with Interpretable Single Models
Author(s)
Beade, Angel
Rodríguez López, Manuel
Santos Reyes, José
Date
2023
Citation
Beade, Á., Rodríguez, M. & Santos, J. (2024). Multiperiod Bankruptcy Prediction Models with Interpretable Single Models. Comput Econ 64, 1357–1390. https://doi.org/10.1007/s10614-023-10479-z
Abstract
[Abstract]: This study considers multiperiod bankruptcy prediction models, an aspect scarcely considered in research despite its importance, since creditors must assess the risk of loans over the entire life of the debt and not at a specifc point in the future. Two possibilities for the implementation of multiperiod prediction models are considered: Multi-Model multiperiod Bankruptcy Prediction Models (MMBPM) and SingleModel multiperiod Bankruptcy Prediction Models (SMBPM). The former considers the conditional probabilities obtained by individual models predicting bankruptcy at specifc times in the future, while the latter is a single model predicting bankruptcy at a specifc time interval in the future. The results show that there are no signifcant diferences between the two approaches when compared using data after the learning period. However, SMBPMs have the important advantage of interpretability for decision-making, which is discussed with examples. Moreover, a comparison of SMBPM performance with external references is performed.
Keywords
Business failure
Multiperiod
Explainable Artificial Intelligence
Interpretability
Genetic programming
 
Editor version
https://doi.org/10.1007/s10614-023-10479-z
Rights
Atribución 4.0 Internacional
ISSN
0927-7099
https://doi.org/10.1007/s10614-023-10479-z
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback